# orn

# OAK RIDGE NATIONAL LABORATORY

MARTIN MARIETTA

# Sediment Contamination in Streams Surrounding the Oak Ridge Gaseous Diffusion Plant

T. L. Ashwood C. R. Olsen I. L. Larsen P. D. Lowry

Environmental Sciences Division Publication No. 2597



Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes—Printed Copy: A05 Microfiche A01

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

#### **ENVIRONMENTAL SCIENCES DIVISION**

# SEDIMENT CONTAMINATION IN STREAMS SURROUNDING THE OAK RIDGE GASEOUS DIFFUSION PLANT

T. L. Ashwood, C. R. Olsen, I. L. Larsen, and P. D. Lowry

Environmental Sciences Division Publication No. 2597

Date of Issue -- May 1986

Prepared for the Oak Ridge Operations Office U.S. Department of Energy

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-ACO5-840R21400

### CONTENTS

|     |      |                                       | Page |
|-----|------|---------------------------------------|------|
| LIS | T OF | FIGURES                               | v    |
| LIS | T OF | TABLES                                | vii  |
| EXE | CUTI | VE SUMMARY                            | ix   |
| 1.  | Int  | roduction                             | 1    |
| 2.  | Met  | hodology                              | 3    |
|     | 2.1  | Sample Collection                     | 3    |
|     | 2.2  | Radionuclide Analysis                 | 5    |
|     | 2.3  | Elemental and Organic Analyses        | 9    |
|     |      | 2.3.1 Sample Preparation and Analysis | 9    |
|     |      | 2.3.2 Calibration and Quality Control | 10   |
| 3.  | RES  | ULTS AND DISCUSSION                   | 14   |
|     | 3.1  | Sediment Grab Samples                 | 14   |
|     | 3.2  | Sediment Cores                        | 22   |
| 4.  | SUM  | MARY AND CONCLUSIONS                  | 29   |
| 5.  | ACKI | NOWLEDGMENTS                          | 30   |
| 6.  | REFI | ERENCES                               | 31   |
| APP | ENDI | CES                                   | 33   |
|     | Α.   | Sample Locations                      | A-1  |
|     | В.   | Radioisotopes                         | B-1  |
|     | c.   | ICP and Mercury Data                  | C-1  |
|     | D.   | Organics                              |      |
|     | r    | Sediment Core Data                    |      |



### LIST OF FIGURES

| <u>Figure</u> |                                                            | Page |
|---------------|------------------------------------------------------------|------|
| 1             | Map indicating primary sampling areas                      | 4    |
| 2             | Radionuclide, organic and metal profiles in sediment cores | 23   |

|   |   |   |   |  | ·^             |
|---|---|---|---|--|----------------|
|   |   |   |   |  | · ·            |
|   |   | • |   |  | >              |
| : |   |   |   |  |                |
| : |   |   |   |  |                |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
| , |   |   |   |  |                |
|   |   |   |   |  |                |
| ŧ |   |   |   |  |                |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
|   |   |   |   |  | •              |
|   |   |   |   |  |                |
|   |   |   |   |  | <del>-</del> . |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
|   |   |   |   |  | ž.             |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
|   | • |   |   |  |                |
|   |   |   |   |  | •              |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
|   |   |   |   |  |                |
| ~ |   |   |   |  | •              |
|   |   |   |   |  |                |
|   |   |   | ٠ |  |                |
| ŀ |   |   |   |  |                |

## LIST OF TABLES

| <u>Table</u> |                                                                                                                                              | Page |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1            | Radionuclide decay properties used in analysis                                                                                               | 7    |
| 2            | Comparison of analysis of uranium samples with certified values (pCi/g $\pm$ 1 $\sigma$ )                                                    | 7    |
| 3            | Comparison of analysis with certified reference materials                                                                                    | 8    |
| 4            | Estimated minimum-detectable activity levels for a 100-min counting interval                                                                 | 8    |
| 5            | Analytical results for National Bureau of Standards (NBS) samples (concentrations in $\mu g/g$ )                                             | 11   |
| 6            | Duplicate analytical results for metals                                                                                                      | 11   |
| 7            | Organic - Typical control data from USEPA environmental monitoring and support lab - Cincinnati (Samples WP-482 and WP-881 Received 7/26/85) | 12   |
| 8            | Summary of contaminant levels                                                                                                                | 13   |
| 9            | Areas of metal contamination exceeding 150% of K-25 mean .                                                                                   | 16   |
| 10           | Areas of organics contamination exceeding 1 μg/g or 150% of K-25 mean                                                                        | 17   |
| 11           | Areas with radioisotope levels exceeding 150% of K-25                                                                                        |      |
|              | mean                                                                                                                                         | 18   |

#### **EXECUTIVE SUMMARY**

Approximately 180 surface-sediment grab samples and three sediment cores were obtained from the Clinch River-Poplar Creek system around the Oak Ridge Gaseous Diffusion Plant (K-25) and screened for metal, organic, and radioisotope contamination. The results of this scoping study were evaluated to identify potential sources of contamination.

Data from this study indicate that Hg, <sup>137</sup>Cs, and <sup>60</sup>Co originate from sources outside K-25. External sources also contribute uranium and miscellaneous organic contamination. Within K-25, the K1700 stream, K901A chromate pond, K710A powerhouse, and K1007B pond appear to be the major areas of contamination. Principal contaminants detected in these areas as a result of this survey were U, Cr, Ni, Cu, Ag, and PCBs.

Although the major areas of contamination have been identified, this report does not attempt to identify the specific sources within K-25 nor to quantify the impact of K-25 sources on the major streams.

#### 1. INTRODUCTION

The Oak Ridge Gaseous Diffusion Plant (K-25) is one of three large, industrial facilities located on the Oak Ridge Reservation.

K-25 has been involved in the production of enriched uranium since layer. Supporting the uranium enrichment operation are chemical process facilities, research and development laboratories, and a large maintenance force. The support activities generate a wide spectrum of wastes, including metals and organic compounds. These wastes have been generated, stored, and disposed of in several areas around the plant.

A survey of sediments in the streams surrounding the K-25 plant has been conducted to identify sites from which pollutants have historically entered or may currently be entering the surface water. Previous studies (DOE 1979; Hoffman et al. 1984) have attempted to address the general extent of sediment contamination around K-25 and the Oak Ridge Reservation. This study identifies areas surrounding the K-25 site where contaminant levels are high enough to indicate the possible presence of a contamination source—for example, seepage from a surface impoundment. Results from this survey may be used in conjunction with groundwater monitoring data and information on current and historic waste management practices to identify specific sources of contamination.

Due to the absence of established standards for contaminant levels in sediments, no attempt is made in this study to characterize any areas as being hazardous.

From January 10, 1985, through February 28, 1985, approximately 180 surface-sediment grab samples and three sediment cores were collected in the Clinch River-Poplar Creek system and several ponds, discharge pipes, and ephemeral streams on the K-25 site. Every effort was made to obtain samples of recently deposited material, so that the results would indicate current conditions at the plant. The presence of <sup>7</sup>Be (a naturally-occurring, 53-d half life radionuclide) was used to indicate whether the samples were of recent origin.

The K-25 Process Support Department screened the samples for metals using inductively coupled plasma spectroscopy (ICP), for PCBs using gas chromatography (GC), and for other organics using a gas chromatograph-mass spectrometer (GC-MS). The samples were also analyzed for gamma-emitting radioisotopes by the ORNL Environmental Sciences Division.

Results of this study are presented in two parts. The first part, consisting of results from the 180 grab samples, yields a picture of current contaminant levels around the K-25 site. The second part, which addresses the three cores, presents a historical perspective of sediment contamination around K-25.

#### METHODOLOGY

#### 2.1 SAMPLE COLLECTION

Surface (fine-grained) sediment samples were collected during January and February 1985 in the Clinch River, Poplar Creek, and tributaries draining K-25. The Clinch River sampling was in the vicinity of the K-1515 sludge treatment pond, K-710A scrap yard, and K-901A holding pond (Fig. 1). Poplar Creek was sampled from its confluence with the Clinch River to about 1 km upstream of the mouth of East Fork Poplar Creek. Several samples were also collected from East Fork Poplar Creek. Sampling along Poplar Creek and its tributaries was intensified near all water effluent sites and surrounding disposal areas (Fig. 1). Particular attention was given to the K-1700 stream, which drains areas near the K-1407 holding ponds, coal pile, and the classified burial ground.

The fine-grained sediment sample collected at each site was split into two subsamples. One was hermetically sealed in a 100 cm<sup>3</sup> aluminum can (plastic lined), and the other subsample was homogenized and placed in a 225 cm<sup>3</sup> (8 oz.) glass jar, sealed with teflon and aluminum foil. Two sediment cores were also collected at each of three sites, using a vibracorer (Lanesky et al. 1979) equipped with a 7.6-cm (3-in.) diam aluminum core pipe. One of the core sites was at the confluence of East Fork Poplar Creek into Poplar Creek (upstream of the K-25 facilities but downstream of the Y-12 Plant and the city of Oak Ridge). The second core site was in lower Poplar Creek near its mouth into the Clinch River (downstream of most K-25 facilities). The



Fig. 1. Map indicating primary sampling areas

third site was in a sediment accumulation zone where the Clinch River widens into Watts Bar Lake.

One of the two cores collected at each site, was sectioned into 2-cm increments in the first 40 cm of the core and into 4-cm increments below 40 cm. These cores were used to determine the vertical distribution of radionuclides and develop a sediment chronology. The second core from each site was sectioned into 4-cm intervals above 80 cm and into 8-cm intervals below 80 cm, to provide enough sedimentary material for the metal and organic analyses. A comparison of the sedimentary structures and characteristics in the two cores during extrusion indicated that both cores could be considered duplicates at the East Fork Poplar Creek and Watts Bar Reservoir sites but not at the Lower Poplar Creek site. Consequently, both cores at the Lower Poplar Creek site were analyzed for gamma-emitting radionuclides.

#### 2.2 RADIONUCLIDE ANALYSIS

Radioactivity analysis was accomplished by gamma-ray spectrometry, using either Ge(Li) or intrinsic germanium detectors. Calibration of the detectors has been previously described by Larsen and Cutshall (1981). The canned samples were counted for a period of typically 100 min using a Nuclear Data 6700 microprocessor system to acquire and store accumulated counts in 4096 channels. A modified Nuclear Data software program allows for an automated peak search routine to be performed, corrects for the presence of any background contributions (Cutshall and Larsen 1980), identifies radionuclides by their gamma-ray

signature, performs activity calculations, and corrects for decay based on the elapsed time interval between the sample collection and sample analysis dates. A hard copy printout of the data was made for each sample analyzed.

Following radioactivity analysis, each sample was air dried at ~72°C for over 48 h. Radioisotope activity levels were then calculated based on dry sample weight.

Table 1 provides data for the specific radionuclides of interest. For comparison, Tables 2 and 3 illustrate radioactivity analyses performed on certified reference materials. The concentrations are corrected for decay to the date of assay.

Due to low uranium activity in many of the samples, the relatively short counting time, as well as the low photon abundance accompanying the photon decay of uranium, the lower levels of detection may not be achieved, and in such instances, a relatively large analytical uncertainty exists. For  $^{235}$ U values to be considered present, at least 2 of the 3 photon peaks listed in Table 1 had to be reported on the hard copy data sheet. Minimum-detectable-activity levels (Pasternak and Harley 1971) for the various radionuclides are presented in Table 4. If any of these quantities of radioactive material were present in the samples when counted for 100 min, then 95% of the time a value greater than zero would be reported for these radionuclides. However, at these low activity levels, the relative analytical uncertainty may range from  $\pm$  40 to 100% of the value. The minimum-detectable activity depends upon matrix composition (i.e., other radionuclides present and their amount), the sample size,

| Table 1. Radionuclide decay p | properties | used in | analvsis |
|-------------------------------|------------|---------|----------|
|-------------------------------|------------|---------|----------|

| Isotope                                                  | Photon energy<br>(KEV) | Photon abundance (%) | Half-life     |
|----------------------------------------------------------|------------------------|----------------------|---------------|
| 7 <sub>Be</sub><br>137 <sub>Cs</sub><br>60 <sub>Co</sub> | 477.6                  | 10.3                 | 53.3 d        |
| 137 <sub>Cs</sub>                                        | 661.6                  | 85.1                 | 30.17 years.  |
| 60 <sub>Co</sub>                                         | 1173.2                 | 99.9                 | 5.27 years.   |
|                                                          | 1332.5                 | 100.0                |               |
| 235 <sub>Ս</sub>                                         | 143.8                  | 10.5                 | 7.04E8 years. |
|                                                          | 163.4                  | 4.7                  | •             |
|                                                          | 205.3                  | 4.7                  |               |
| 238 <sub>U(as</sub> 234mpa)a                             | 1001                   | 0.92                 | 4.47E9 years. |
| - t                                                      |                        |                      |               |

 $<sup>^{\</sup>rm a}$ Daughter radionuclide of  $^{\rm 238}$ U, assumed to be in equilibrium.

Table 2. Comparison of analysis of uranium samples with certified values (pCi/g  $\pm 1 \sigma$ )

| Sample (a)                                       | Radioisotope                                                     | Measured                               | Certified       |
|--------------------------------------------------|------------------------------------------------------------------|----------------------------------------|-----------------|
| NBL-76B<br>235 <sub>U</sub> @143<br>@163<br>@205 | 238 <sub>U</sub> @1001<br>2.6 ± 0.2<br>1.6 ± 0.3<br>1.6 ± 0.3    | 38.8 ± 3.5<br>(1.6) <sup>a</sup>       | 33.7 ± 0.3      |
| CCRM-BL1<br>235U @143<br>@163<br>@205            | 238U @1001<br>5.2 ± 0.7<br>4.3 ± 1.3<br>5.4 ± 1.3                | $.76 \pm 12$ (3.4) a                   | 75 <u>+</u> 2   |
| CCRM-DL1<br>235U @143<br>@163<br>@205            | 238U @1001<br>0.9 ± 0.1<br>0.7 ± 0.2<br>ND                       | $17.4 \pm 2.6$ $(0.6)^{\overline{a}}$  | 13.7 ± 0.5      |
| CCRM-BL4A<br>235U @143<br>@163<br>@205           | 238 <sub>U</sub> @1001<br>24.0 ± 1.6<br>16.3 ± 3.0<br>19.6 ± 3.0 | 402 <u>+</u> 29<br>(19.3) <sup>a</sup> | 419 <u>+</u> 11 |

 $^aBased$  on an activity ratio of  $^{235}\text{U}/^{238}\text{U}$  = 4.60%. New Brunswick Laboratory, Argonne National Lab., Ill. NBL:

CCRM: Canadian Certified Reference Material, Canada Centre for Mineral

and Energy Technology, Ottawa, Canada.

ND: Not detected.

Table 3. Comparison of analysis with certified reference materials (pCi/g  $\pm$  1  $\sigma$ )

| Sample                                                         |                      | Cs-137                     | K-40                     | Ac-228                     |
|----------------------------------------------------------------|----------------------|----------------------------|--------------------------|----------------------------|
| Rocky Flats Soil #1<br>NBS SRM 4353<br>(Assay date: 15 Dec 80) | Measured<br>Expected | 0.49 ± 0.02<br>0.48 ± 0.01 | 19.2 ± 0.1<br>19.5 ± 0.6 | 1.93 ± 0.08<br>1.89 ± 0.03 |
|                                                                |                      | Cs-137                     | Co-60                    |                            |
| IAEA Marine sediment<br>SD-N-1                                 | Measured             | 0.396 ± 0.01               | 8 0.312 ± 0.029          |                            |
| (Assay date: 1 Jan 82)                                         | Expected             | $0.378 \pm 0.01$           | $2 \ 0.319 \pm 0.012$    |                            |

Table 4. Estimated minimum-detectable activity levels for a 100-min counting interval

| Radionuclide      | MDA<br>pCi | Concentration for an 80-g dry wt sample (pCi/g) |
|-------------------|------------|-------------------------------------------------|
| 7<br>Be           | 18         | 0.2                                             |
| 137 <sub>Cs</sub> | 3          | 0.04                                            |
| 60 <sub>Co</sub>  | 3          | 0.04                                            |
| <sup>235</sup> U  | 16         | 0.20                                            |
| 238 <sub>U</sub>  | 220        | 2.8                                             |

counting time, detector efficiency, geometry, and any background contributions. Thus the values reported in Table 4 should not be considered absolutes but may range by several factors, depending on the above conditions. Their purpose is to provide a general level of sensitivity expected from a typical 100-min count.

#### 2.3 ELEMENTAL AND ORGANIC ANALYSES

#### 2.3.1 Sample Preparation and Analysis

For organic analysis, wet subsamples of the refrigerated samples were extracted using methylene chloride and scanned for PCBs and insecticides using GC. Selected samples were further analyzed by GC-MS using a Hewlett-Packard HP 5985-B. Organic priority pollutants were identified and quantified using computer-assisted software coupled with spiked internal standards in each sample.

Elemental analysis (except for mercury) was performed by emission spectroscopy, using a Jarrel-Ash ICP 9000 spectrophotometer.

Approximately 10 g of dried material was placed in a 50 cm<sup>3</sup> plastic jar along with a pea-sized plastic impact bead and shaken vigorously for several hours to pulverize the dried sample. One gram of this material was then digested using EPA Method 3050. For the elements Ag, Sb, and Sn, a diluted form of "aqua regia" was used, and for the other elements, a 2% nitric acid solution along with hydrogen peroxide was used. Following digestion, the samples were filtered through #42 Whatman filter paper, and the residue on the filter was discarded. Reagent solutions were treated similarly to determine blank contributions. The analyte solution was then transferred to 100-mL containers and diluted with a 10% nitric acid solution.

Mercury was analyzed by the EPA Method 7470, using a Fisher Atomic Absorption (AA) instrument dedicated exclusively to this analysis.

#### 2.3.2 Calibration and Quality Control

Certified solutions of various elements of "Spex standards" were prepared and appropriately diluted using a 10% nitric acid for ICP analysis. A linear calibration of up to a 500-ppm concentration for various elements was performed. Sample concentrations determined beyond this range were verified using a higher concentration of standards when necessary. Table 8 (see Sect. 3.1) lists the lower detection limits expected from this type of analysis. Typical ICP accuracy from aqueous samples is  $\pm$  20% at the 2-sigma level. Quality assurance is regularly performed using an Environmental Research Associates waste water intracalibration solution. For this study, samples of National Bureau of Standards River sediment (1645 and 1646) were submitted and run. Results are illustrated in Table 5. Mercury quality assurance analysis was routinely performed by analysis of an NBS certified solution #1641B. Table 6 presents a comparison of results from duplicate analyses.

Calibration for organic analysis was performed daily using quality assurance standards from the EPA. Routine analyses of quality assurance solutions are performed monthly. Table 7 compares typical values determined by K-25 with the expected concentrations. Limits of detection for priority pollutants are given in Table 8 (see Sect. 3.1). Organics not analyzed for but, in many instances, present include light and heavy hydrocarbons.

Table 5. Analytical results for National Bureau of Standards (NBS) Samples (concentrations in  $\mu g/g)$ 

|              |       | NBS 1645<br>River sediment |            |       | NBS 1646<br>Estuarine sediment |          |  |
|--------------|-------|----------------------------|------------|-------|--------------------------------|----------|--|
| Element      | Std.  | Prep No.1                  | Prep No.2ª | Std.  | Prep No.1                      | Prep No. |  |
| Arsenic(As)  | (66)b | 60                         | 60         | 11.6  | 22.3                           | 27.5     |  |
| Cadmium(Cd)  | 10.2  | 8.3                        | 7.6        | 0.4   | 0.7                            | 0.5      |  |
| Chromium(Cr) | 29600 | 26300                      | 27200      | 76    | 40.9                           | 52.1     |  |
| Copper(Cu)   | 109   | 106                        | 112        | 18    | 16.3                           | 15.6     |  |
| Nickel(Ni)   | 45.8  | 41.3                       | 50.9       | 32    | 24.5                           | 27.5     |  |
| Lead(Pb)     | 714   | 650                        | 658        | 28.2  | 22.3                           | 22.4     |  |
| Selenium(Se) | (1.5) | NRC                        | NR         | (0.6) | <5                             | <5       |  |
| Zinc(Zn) ` ´ | 1720  | 1490                       | 1510       | 138   | 109                            | 115      |  |

 $<sup>^{\</sup>rm a}{\rm Prep}$  #2 is a duplicate of Prep #1. Both preparations followed EPA procedure 3050.

Table 6. Duplicate analytical results for metals

| Element        | Number of<br>duplicates <sup>a</sup> | Sample<br>mean<br>(µg/g) | Duplicate<br>mean<br>(µg/g) |
|----------------|--------------------------------------|--------------------------|-----------------------------|
| Silver (Ag)    | 3                                    | 5.0                      | 4.9                         |
| Arsenic (As)   | 1                                    | 9.6                      | 5.6                         |
| Cadmium (Cd)   | 0                                    |                          |                             |
| Chromium (Cr)b | 4                                    | 36.8                     | 36.5                        |
| Copper (Cu)    | 4                                    | 30.5                     | 31.2                        |
| Mercury (Hg)   | 3                                    | 3.8                      | 3.7                         |
| Nickel (Ni)    | 5                                    | 42.0                     | 40.8                        |
| Lead (Pb)      | 5                                    | 20.3                     | 20.3                        |
| Selenium       | 5                                    | 142                      | 140                         |
| Zinc (Zn)      | 5                                    | 138                      | 126                         |

 $<sup>^{\</sup>rm a}$  Includes only those samples for which a given element was detected.

<sup>&</sup>lt;sup>b</sup>Numbers in parentheses are noncertified results.

<sup>&</sup>lt;sup>C</sup>NR means value was not reported.

bDoes not include sample/duplicate pair from K901A chromate pond. Results of this pair were 1400  $\mu g/g$  vs 1200  $\mu g/g$ .

Table 7. Organic - Typical control data from USEPA environmental monitoring and support lab - Cincinnati (Samples WP-482 and WP-881 Received 7/26/85)

| Component: WP-482<br>(base neutrals)                                                                                                                                               | Measured<br>conc.<br>(µg/L)                         | Acceptable<br>range<br>(µg/L)                                                                                | EPA certified<br>value<br>(µg/L)                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1,4-Dichlorobenzene                                                                                                                                                                | 16                                                  | (9-24)                                                                                                       | 24.8                                                 |
| Bis (2-chloroisopropyl) ether                                                                                                                                                      | 29                                                  | (9-24)                                                                                                       | 38.8                                                 |
| Hexachloroethane                                                                                                                                                                   | 15                                                  | (9-24)                                                                                                       | 30.0                                                 |
| Nitrobenzene                                                                                                                                                                       | 52                                                  | (9-24)                                                                                                       | 76.5                                                 |
| Naphthalene                                                                                                                                                                        | 15                                                  | (9-24)                                                                                                       | 24.8                                                 |
| Dimethyl phthalate                                                                                                                                                                 | 13                                                  | (9-24)                                                                                                       | 40.0                                                 |
| Acenaphthylene                                                                                                                                                                     | 14                                                  | (9-23)                                                                                                       | 19.5                                                 |
| Fluorene                                                                                                                                                                           | 36                                                  | (9-23)                                                                                                       | 51.2                                                 |
| 4-Chlorophenol phenyl ether                                                                                                                                                        | 35                                                  | (9-23)                                                                                                       | 76.7                                                 |
| 4-Bromophenyl phenyl ether                                                                                                                                                         | 35                                                  | (9-23)                                                                                                       | 41.5                                                 |
| Anthracene                                                                                                                                                                         | 30                                                  | (9-23)                                                                                                       | 40.0                                                 |
| Fluoranthene                                                                                                                                                                       | 24                                                  | (9-23)                                                                                                       | 29.8                                                 |
| Butyl benzyl phthalate                                                                                                                                                             | 12                                                  | (9-23)                                                                                                       | 51.3                                                 |
| Chrysene                                                                                                                                                                           | 23                                                  | (9-23)                                                                                                       | 69.9                                                 |
| Bis (2-ethylhexyl) phthalate                                                                                                                                                       | 10                                                  | (9-23)                                                                                                       | 29.1                                                 |
| Benzo (b) fluoranthene                                                                                                                                                             | 29                                                  | (9-23)                                                                                                       | 40.0                                                 |
| Benzo (a) pyrene                                                                                                                                                                   | 21                                                  | (9-23)                                                                                                       | 24.9                                                 |
| Dibenzo (a,h) anthracene                                                                                                                                                           | 35                                                  | (9-23)                                                                                                       | 40.7                                                 |
| Benzo (g,h,i) perylene                                                                                                                                                             | 76                                                  | (9-23)                                                                                                       | 80.4                                                 |
| Component: WP-881                                                                                                                                                                  | Measured conc.                                      | Acceptable range                                                                                             | EPA certified                                        |
| (acids)                                                                                                                                                                            | (μg/L)                                              | (µg/L)                                                                                                       | (µg/L)                                               |
| 2-Chlorophenol 2-Nitrophenol Phenol 2.4-Dimethylphenol 2.4-Dichlorophenol 2.4.6-Trichlorophenol 4-Chloro-3-methylphenol 2-Methyl-4,6-dinitrophenol Pentachlorophenol 4-Nitrophenol | 29<br>29<br>43<br>21<br>40<br>19<br>52<br>210<br>32 | (8.1-37)<br>(8.1-37)<br>(12-89)<br>(12-89)<br>(12-89)<br>(12-89)<br>(17-73)<br>(17-73)<br>(6.8-77)<br>(5-40) | 30<br>50<br>100<br>30<br>50<br>25<br>75<br>250<br>75 |

Table 8. Summary of contaminant levels

| Element/Compound           | Detection<br>limit <sup>a</sup> | No. of<br>samples<br>detected | K-25<br>Meanb | Maximum<br>level | No. of<br>high <sup>c</sup><br>sample: |
|----------------------------|---------------------------------|-------------------------------|---------------|------------------|----------------------------------------|
| Silver(Ag)                 | 0.6                             | 29                            | 8             | 89               | 4                                      |
| Arsenic(As)                | 5.0                             | 14                            | 50            | 190              | 2                                      |
| Cadmium(Cd)                | 0.3                             | 13                            | 2             | 5                | 2                                      |
| Chromium(Cr)               | 1.0                             | 51                            | 69d           | 3300             | 11                                     |
| Copper(Cu)                 | 0.4                             | 51                            | 94            | 470              | 12                                     |
| Lead(Pb)                   | 5.0                             | 49                            | 42            | 140              | 9                                      |
| Mercury(Hg)                | 0.1                             | 45                            | 6             | 45               | 6                                      |
| Nickel(Ni)                 | 1.0                             | 52                            | 220           | 1300             | 13                                     |
| Selenium(Se)               | 5.0                             | 38                            | 91            | 280              | 5                                      |
| Zinc(Zn)                   | 0.1                             | 52                            | 250           | 990              | 8                                      |
| Total organic carbon       |                                 | 180                           | 3             | 65               | 4                                      |
| PCB 1254                   | 1.0                             | 5                             | 7             | 13               | 1                                      |
| PCB 1260                   | 1.0                             | 2                             | 4             | 5                | 1                                      |
| Acenaphthylene             | 0.004                           | 7                             | <1            | <1               | 0                                      |
| Anthracene                 | 0.002                           | 11                            | <1            | 2                | 1                                      |
| Benzo(a)Anthracene         | 0.008                           | 3                             | 1             | 2                | 1                                      |
| Bis(2-ethylhexyl)phthalate | 0.003                           | 23                            | 7             | 97               | 2                                      |
| Chrysene                   | 0.003                           | 4                             | 2             | 3                | 1                                      |
| di-N-butylphthalate        | 0.003                           | 19                            | <1            | 1                | 0                                      |
| Fluoranthene               | 0.002                           | 23                            | 1             | 10               | 4                                      |
| Phenanthrene               | 0.005                           | 23                            | 1             | 7                | 4                                      |
| Pyrene                     | 0.002                           | 24                            | 1             | 12               | 4                                      |
| 137Cesium                  | 0.04                            | 178                           | 2             | 15               | 32                                     |
| <sup>60</sup> Cobalt       | 0.04                            | 111                           | <1            | 2                | 15                                     |
| 238 <sub>Hranjum</sub>     | 2.8                             | 40                            | 30            | 254              | 8                                      |
| 235 <sub>Uranium</sub>     | 0.2                             | 25                            | 4             | 20               | 6                                      |

aUnits of measurements are percentage for total organic carbon, µg/g for metals and organics, and pCi/g for radioisotopes. All units are based on

DThe K-25 mean is calculated as the average level of those samples in

which a particular element or compound was detected. C"High" is defined as 150% of the K-25 mean or  $1\mu g/g$ , whichever is greater. For total organic carbon, the threshold is 10%

dThe K-25 mean for Cr does not include samples from the Chromate Pond.

#### 3. RESULTS AND DISCUSSION

#### 3.1 SEDIMENT GRAB SAMPLES

Table 8 presents a general summary of contaminant levels for the 182 sediment grab samples (including the top 4 cm of three cores). All 182 samples were analyzed for total organic carbon (TOC) screened for PCBs and counted for radioisotopes. Fifty-two samples were analyzed for metals by ICP and AA. Thirty-two samples were analyzed by GC-MS for extractable organics.

Although the ICP and GC-MS analyses cover a wide range of elements and compounds, this study focused on those contaminants identified by Hoffman et al. (1984, Table VII) as warranting further study on the Oak Ridge Reservation. Hoffman et al. (1984) made this determination based on those contaminants for which an estimated level of intake exceeded the estimated allowable daily intake and which were found in concentrations above minimum detectable limits. The organics list for this study was reduced further by elimination of those components which were not found at levels above detectable limits at K-25.

The K-25 mean for each contaminant represents the average level of all samples for which that contaminant was detected. For example, the K-25 silver mean was determined by averaging the silver content of the 29 samples in which silver was detected.

The K-25 mean provides a basis for determining which samples have relatively high levels of a particular contaminant. The K-25 mean, rather than the background level, is used because the objective is to determine which samples are high for K-25, not to determine which

samples are high relative to background. Using the K-25 mean facilitates identification of those areas around the K-25 site which may be sources of contamination.

The number of high samples is based on those samples which exceeded 150% of the mean. For some of the organics, 150% of the mean would still have been less than 1 ug/g, so the number of high samples was based on those exceeding 1 ug/g. For total organic carbon, the threshold was set at 10%. Tables 9, 10, and 11 respectively present the samples that were determined to be high for metals, organics, and radioisotopes. It must be remembered that this is purely an arbitrary designation to determine those areas that are potential sources of contamination. In the absence of definitive standards and further study, no statement can be made about the potential environmental effects, if any, of these contaminant levels. Following is a discussion, by area, of the grab sample results.

The K-901A chromate pond (Fig. 1 and Appendix A, p. A-13) sediments are high in chromium, as would be expected to result from the chromate wastes that have settled in this pond. The reason for the high zinc and selenium levels is not readily apparent, unless these elements are part of the proprietary formula of the chromate corrosion inhibitor used in the recirculating cooling water systems.

The samples identified in Table 9 as being from the Classified Burial Ground were actually taken from ephemeral streams on the north (42) and southeast (216) slopes of the burial ground hill (Fig. 1 and Appendix A, pp. A-4 and A-14). Sample 42 appears to be in the

Table 9. Areas of metal contamination exceeding 150% of K-25 mean

|                               | Metals (ug/g) |                                       |              |          |             |              |             |          |               |            |
|-------------------------------|---------------|---------------------------------------|--------------|----------|-------------|--------------|-------------|----------|---------------|------------|
| Area/sample No.               | Ag            | As                                    | Cd           | Cr       | ctals<br>Cu | (ug/g)<br>Hg | Ni<br>Ni    | Pb       | Se            | Zn         |
| Chromate pond                 | <del></del>   | · · · · · · · · · · · · · · · · · · · |              |          |             |              |             |          |               |            |
| SS020785-124                  | <0.6          | <5                                    | <0.3         | 740      | 9           | 0.3          | 27          | 17       | 120           | 230        |
| SS020785-125                  | <0.6          | <b>&lt;</b> 5                         | <0.3         | 2800     | 28          | <0.2         | 10          | 8        | <5            | 990        |
| SS020785-126                  | 1.2           | <5                                    | <0.3         | 1600     | 8           | 0.6          | 5           | 8        | <5            | 410        |
| SS020785-127                  | <0.6          | <5                                    | <0.3         | 250      | 0           | 1.1          | 2           | 5        | <5            | 350        |
| SS020785-130                  | 1.5           | <5                                    | <0.3         | 3300     | 8           | 0.6          | 6           | 5        | <5            | 900        |
| SS020885-132                  | 1.8           | <5                                    | <0.3         | 410      | 5           | <0.1         | 20          | 14       | 110           | 140        |
| SS020885-133                  | <0.6          | <5                                    | <0.3         | 2100     | 17          | 0.9          | 26          | 16       | 88            | 560        |
| SS020885-135                  | <0.6          | 9                                     | <0.3         | 1600     | 26          | 0.8          | 39          | 24       | 110           | 230        |
| Class. burial ground          |               |                                       |              |          |             |              |             |          |               |            |
| SS02048542                    | 23.0          | <5                                    | <0.3         | 66       | 77          | 1.4          | 83          | 77       | 58            | 230        |
| SS022885-216                  | 1.2           | <5                                    | <0.3         | 17       | 40          | 0.9          | 120         | 10       | 140           | 41         |
| Clinch River Trib 1           |               |                                       |              |          |             | _            |             |          |               |            |
| SS012485-10                   | <0.6          | <5                                    | <0.3         | 51       | 4           | 0.7          | 38          | 22       | 140           | 190        |
| East Fork Poplar Creek        |               |                                       |              |          |             |              |             |          |               |            |
| SS022285-138                  | <0.6          | <5                                    | 3.3          | 45       | 76          | 45.0         | 54          | 110      | 37            | 320        |
| EF021585(0-4)                 | 4.9           | <5                                    | <0.3         | 49       | 40          | 20.7         | 33          | 26       | 110           | 130        |
| K1007B (PC Trib 4)            |               |                                       |              |          |             |              |             |          |               |            |
| SS020485-45                   | 12.0          | <5                                    | < 0.3        | 150      | 56          | <0.5         | 89          | 47       | 38            | 210        |
| SS020485-46                   | 17.0          | <5                                    | 1.0          | 63       | 63          | <0.5         | 86          | 37       | 21            | 220        |
| K1700 Stream                  |               |                                       |              |          |             |              |             |          |               |            |
| SS020485-41R                  | <0.6          | 23                                    | <0.3         | 39       | 250         | <1.0         | 420         | 46       | <5            | 160        |
| SS020485-35L                  | <0.6          | <5                                    | <0.3         | 69       | 210         | 1.5          | 400         | 39       | 110           | 210        |
| SS020485-34L                  | <0.6          | 15                                    | <0.3         | 50       | 220         | 3.0          | 430         | 49       | 48            | 190        |
| SS020485-33L                  | <0.6          | 34                                    | 1.3          | 62       | 230         | 1.8          | 460         | 48       | <5            | 240        |
| SS020485-32M                  | 89.0          | 45                                    | 1.1          | 65       | 250         | 2.9          | 520         | 73       | <5            | 220        |
| SS020485-31R                  | <0.6          | 16                                    | 1.1          | 57       | 210         | 1.8          | 560         | 51       | <b>&lt;</b> 5 | 240        |
| SS011085-6L                   | 1.8           | 22                                    | 8.0          | 130      | 300         | 6.6          | 830         | 140      | 57            | 410        |
| SS011085-5R                   | 2.5           | 190                                   | <0.3         | 100      | 470         |              | 1200        | 100      | 280           | 450        |
| SS020485-49                   | 1.4           | 33                                    | <0.3         | 91       | 250         |              | 1000        | 97       | 150           | 330        |
| SS011085-4L                   | <0.6          | 170                                   | 4.6          | 98       | 440         | 4.6          | 950         | 120      | <5            | 510        |
| SS011085-3L                   | <0.6          | 68                                    | 2.4          | 91       | 260         |              | 1300        | 94       | <5            | 350        |
| SS011085-2L<br>SS011085-1L    | 1.4<br><0.6   | 45<br>15                              | 2.2<br>1.5   | 88<br>57 | 260<br>140  | 9.5          | 1200<br>420 | 94<br>49 | <5<br><5      | 370<br>220 |
|                               |               | -                                     |              |          |             |              |             |          | _             |            |
| Poplar Creek                  |               | ٦٢                                    | 2.0          | ( 7      | 70          | 25.5         |             | 4.0      | 70            | 200        |
| SS020685-52R                  | 6.2           | <5                                    | 2.0          | 67       | 78          | 25.6         | : 44        | 43       | 72            | 200        |
| \$\$020685-111R               | <0.6          | <5<br><5                              | <0.3<br><0.3 | 56       | 47          | 11.0         | 59          | 30       | 77            | 170        |
| SS020785-86R<br>SS020785-120L | 44.0          | <5<br><5                              | <0.3         | 32<br>95 | 30<br>35    | 5.4<br>9.5   | 46<br>51    | 29<br>27 | 67<br>60      | 170        |
| SS020785-120L                 | <0.6          | <5                                    | <0.3         | 610      | 52<br>62    | <0.5         | 68          | 48       | 60<br>45      | 210<br>590 |
| SS021185-155R                 | 2.6           | <5                                    | <0.3         | 46       | 62<br>41    | 7.7          | 60          | 20       | 160           | 150        |
| 33021103~133K                 | 2.0           | ~5                                    | ~0.3         | 40       | 41          | 1.1          | ου          | 20       | 100           | ı DU       |

Table 10. Areas of organics contamination exceeding 1  $\mu g/g$  or 150% of K-25 mean

|                                |                         |             |             |     | Organics <sup>b</sup><br>(µg/g) |     |      |     |     |     |     |      |
|--------------------------------|-------------------------|-------------|-------------|-----|---------------------------------|-----|------|-----|-----|-----|-----|------|
| Area/sample No.                | TOC <sup>a</sup><br>(%) | PCB<br>1254 | PCB<br>1260 | 2B  | 38                              | 5B  | 138  | 188 | 26B | 318 | 448 | 458  |
| Chromate Pond                  |                         |             |             |     |                                 |     |      |     |     |     |     |      |
| SS020785-125                   | 1.9                     | <1.0        | <1.0        | ND  | ND                              | ND  | 2.9  | ND  | ND  | 1.6 | 1.1 | 1.4  |
| East Fork Popla                | r Cree                  | k           |             |     |                                 |     |      |     |     |     |     |      |
| SS022285-138                   | 3.9                     |             | <1.0        | ND  | ND                              | 1.3 | 4.7  | 1.9 | ND  | 3.1 | 2.8 | 4.0  |
| MICORD (DC Twik                | 4.\                     |             |             |     |                                 |     |      |     |     |     |     |      |
| K1007B (PC Trib<br>SS020485-44 | 4)                      | 6.5         | <1.0        | ND  | ND                              | ND  | ND   | ND  | ND  | ND  | ND  | ND   |
| SS020485-45                    | ND                      |             | <1.0        | 0.7 | ND                              | ND  | 0.5  | 0.5 | 0.2 | 0.9 | 0.3 | 1.2  |
| SS020485-46                    | 1.4                     |             | <1.0        | 0.2 | ND                              | ND  | ND   | ND  | ND  | ND  | ND  | ND   |
| SS020485-47                    | 1.3                     |             | <1.0        | ND  | ND                              | ND  | ND   | ND  | ND  | ND  | ND  | ND   |
| K1515                          |                         |             |             |     |                                 |     |      |     |     |     |     |      |
| SS013085-16                    | 64.6                    | <1.0        | <1.0        | ND  | ND                              | ND  | ND   | ND  | ND  | ND  | ND  | ND   |
| K1700 Stream                   |                         |             |             |     |                                 |     |      |     |     |     |     |      |
| SS020485-39L                   | 12.4                    | <1.0        | <1.0        | ND  | ND                              | ND  | ND   | ND  | ND  | ND  | ND  | ND   |
| SS020485-38R                   | 11.4                    | <1.0        |             | ND  | ND                              | ND  | ND   | ND  | ND  | ND  | ND  | ND   |
| SS020485-35L                   | 4.6                     | <1.0        | <1.0        | ND  | 2.4                             | ND  | ND   | ND  | 0.1 | 3.0 | 2.4 | 2.5  |
| SS020485-32M                   | 16.2                    | <1.0        | <1.0        | ND  | ND                              | ND  | ND   | ND  | ND  | ND  | ND  | ND   |
| SS011085-5R                    | 7.3                     | ND          | ND          | ND  | 0.3                             | ND  | 13.9 | ND  | 0.1 | 0.4 | 0.4 | 0.2  |
| Miscellaneous                  |                         |             |             |     |                                 |     |      |     |     |     |     |      |
| SS022285-141                   | 2.9                     | 6.6         | 2.4         | ND  | ND                              | ND  | ND   | ND  | ND  | ND  | ND  | ПN   |
| Poplar Creek                   |                         |             |             |     |                                 |     |      |     |     |     |     |      |
| SS020785-117                   | 2.3                     | <1.0        | <1.0        | ND  | ND                              | ND  | 1.8  | ND  | ND  | 2.6 | 2.7 | 2.4  |
| SS020785-115                   | 2.9                     | <1.0        | 5.0         | ND  | ND                              | 2.1 | ND   | 3.0 | 0.2 | 9.8 | 6.6 | 12.1 |
| SS021185-154R                  | 2.7                     | <1.0        |             | ND  | 0.4                             | ND  | 96.7 | ND  | 0.1 | 0.5 | 0.7 | 0.8  |
| SS021185-155R                  | 2.4                     | <1.0        |             | ND  | 0.5                             | ND  | 1.2  | ND  | ND  | 1.1 | 1.0 | 1.6  |

ND = Not Detected

 $a_{TOC}$  = total organic carbon.

bOrganic compound codes are as follows: 2B = Acenaphthylene; 3B = Anthracene; 5B = Benzo(a)Anthracene; 13B = Bis(2-ethylhexyl)phthalate;

<sup>18</sup>B = Chrysene; 26B = di-N-Butylphthalate; 31B = Fluoranthene;

<sup>44</sup>B = Phenanthrene; 45B = Pyrene.

Table 11. Areas with radioisotope levels exceeding 150% of K-25 mean

|                                     | Radioisotopes   |                   |                     |           |          |  |  |  |  |
|-------------------------------------|-----------------|-------------------|---------------------|-----------|----------|--|--|--|--|
|                                     |                 |                   | pCi/g) <sup>a</sup> |           |          |  |  |  |  |
| Area/sample No.                     | 7 <sub>Be</sub> | 137 <sub>Cs</sub> | 60 <sub>Co</sub>    | 238ೖ      | 235լ     |  |  |  |  |
| Clinch River                        |                 |                   |                     |           |          |  |  |  |  |
| SS013185-22                         | ND              | 14.90             | 0.70                | ИD        | ND       |  |  |  |  |
| SS013085-14                         | ND              | 13.40             | 1.07                | ND        | ND       |  |  |  |  |
| \$\$013185-21                       | 0.22            | 5.71              | 0.64                | ND        | ИÐ       |  |  |  |  |
| SS021185-151L                       | ND              | 12.82             | 1.14                | ND        | ND       |  |  |  |  |
| SS013185-24                         | 0.81            | 7.16              | 0.49                | ND.       | ND       |  |  |  |  |
| SS021585-166L                       | ND              | 9.15              | 0.70                | 2.8       | 0.7      |  |  |  |  |
| SS021585-165L                       | ND              | 6.41              | 0.19                | ND        | ND       |  |  |  |  |
| SS021585-164L                       | 0.33            | 8.57              | 0.84                | ND        | ON       |  |  |  |  |
| SS021585-163L                       | 0.85            | 7.04              | 0.55                | ND        | ND.      |  |  |  |  |
| SS022185-208                        | ND              | 7.87              | 0.45                | 5.5       | 0.       |  |  |  |  |
| SS013185-30                         | 0.63            | 11.20             | 0.85<br>0.77        | 5.0       | 0.3      |  |  |  |  |
| SS022185-209<br>SS021585-162L       | ND<br>0.69      | 12.28<br>7.22     | 0.71                | ND:<br>ND | ON<br>ON |  |  |  |  |
| SS021585-161R                       | ND              | 7.77              | 0.52                | ND        | ND       |  |  |  |  |
| SS020785-129                        | 1.52            | 14.40             | 1.34                | ND        | ND       |  |  |  |  |
| SS020785-123                        | 0.80            | 7.21              | 0.66                | ND        | ND       |  |  |  |  |
| SS021185-156L                       | ND.             | 8.75              | 0.61                | ND        | ND       |  |  |  |  |
| SS021185-157L                       | ND              | 9.05              | 0.86                | ND        | ND       |  |  |  |  |
| WB021485[0-4CM]                     | ND              | 9.70              | 0.80                | ND        | ND       |  |  |  |  |
| Clinch River Trib 1                 |                 |                   |                     |           |          |  |  |  |  |
| SS012485-10                         | ND              | 3.73              | ND                  | ND        | ND       |  |  |  |  |
| SS012485-11R                        | 1.80            | 5.26              | 0.38                | ND        | ND       |  |  |  |  |
| \$\$012485-12R                      | 1.74            | 5.29              | 0.33                | ИВ        | ИD       |  |  |  |  |
| SS012485-9L                         | ND              | 5.06              | 0.39                | ND        | ND       |  |  |  |  |
| SS013185-23                         | ND              | 6.23              | 0.51                | ND        | ND       |  |  |  |  |
| East Fork Poplar Creek SS022185-210 | ND              | 4.00              | 1.42                | ND        | DM       |  |  |  |  |
| SS022285-139                        | ND              | 3.27              | 0.94                | ND        | ND       |  |  |  |  |
| EF021585(0-4)                       | ND              | 4.20              | 1.60                | 7.2       | 0.4      |  |  |  |  |
| K1515                               |                 |                   |                     |           |          |  |  |  |  |
| SS013085-13                         | NO              | 12.90             | 1.38                | ND        | ND       |  |  |  |  |
| SS013085-16                         | ND              | 0.29              | 1.94                | ND        | ND       |  |  |  |  |
| SS013085-17                         | ND              | 10.50             | 1.35                | ND        | ND       |  |  |  |  |
| SS013185-18                         | ND              | 14.30             | 1.85                | ND        | ND       |  |  |  |  |
| SS013185-19                         | ND              | 12.60             | 1.27                | ND        | ND       |  |  |  |  |
| SS013185-20                         | 1.42            | 11.60             | 1.67                | ND        | ND       |  |  |  |  |
| (1700 Stream<br>SS020485-33L        | 5.29            | 1.00              | ND                  | 58.5      | 3.       |  |  |  |  |
| SS011085-6L                         | 2.30            | 1.14              | ND                  | 76.8      | 5.       |  |  |  |  |
| SS011085-5R                         | 6.29            | 0.99              | ND                  | 145.0     | 12.      |  |  |  |  |
| SS020485-49                         | ND              | 0.88              | ND                  | 57.1      | 7.       |  |  |  |  |
| SS020485-48                         | 6.20            | 0.85              | ND                  | 80.9      | 6.       |  |  |  |  |
| SS011085-4L                         | ND              | 1.39              | 0.20                | 254.0     | 19.      |  |  |  |  |
| SS011085-3L                         | 1.61            | 1.24              | 0.8                 | 82.4      | 7.       |  |  |  |  |
| SS011085-2L                         | 1.83            | 1.06              | ND                  | 81.7      | 7.       |  |  |  |  |
| Poplar Creek                        |                 |                   |                     |           |          |  |  |  |  |
| SS020685-52R                        | ND              | 4.26              | 1.70                | ND        | DN       |  |  |  |  |
| SS020685-67                         | 2.05            | 1.38              | 1.28                | ND        | ND       |  |  |  |  |
| SS020685-76                         | 1.38            | 1.41              | 1.25                | ND        | ND       |  |  |  |  |
| SS021185-154R                       | 0.71<br>ND      | 1.46<br>3.30      | 1.01<br>0.35        | ND        | ND       |  |  |  |  |
| SS020885-94R<br>SS021185-155R       | 4.20            | 3.49              | 0.35                | 6.8<br>ND | O.       |  |  |  |  |
| Powerhouse                          |                 |                   |                     |           |          |  |  |  |  |
| SS013185-28                         | 0.66            | 3.03              | 0.35                | ND        | ND       |  |  |  |  |
| SS013185-29                         | 1.91            | 3.45              | 0.17                | 12.8      | 1.       |  |  |  |  |

watershed for the K1700 stream, and its high silver and lead levels are consistent with similarly high levels in that stream.

The metal and organic levels shown for the Clinch River are interesting, but probably do not indicate any significant K-25 sources. Sample 165L was taken from the opposing bank of the river downstream of the Gallaher Road Bridge and upstream of the K710A powerhouse (Fig. 1 and Appendix A, p. A-11). This is a backwater area, and the reason for the relatively high selenium level is not apparent. The other sample is actually the top 4 cm of the core taken from the Clinch River near the city of Kingston. The cadmium value should be verified before the suspected source is investigated further.

Sample 10 (Appendix A, p. A-12), which appears high in phthalate, is also in a backwater area below the K1515 water treatment plant. Again, the source is unclear.

The <sup>137</sup>Cs and <sup>60</sup>Co in the Clinch River are most likely from ORNL (Turner, Olsen, and Wilcox 1985). These radioisotopes are concentrated in the K1515 sludges. The radioisotope levels in Clinch River Tributary 1, which is downstream of K1515 (Fig. 1), indicate that this area is probably a backwater area, instead of a source to the Clinch River.

The metal, organic, and <sup>238</sup>U levels in K1007B pond (Fig. 1) may be attributable to lab drains which are reported to empty into this pond (J. E. Stone, personal interview, February 1985).

High levels of uranium isotopes, Ag, Cd, Cu, Ni, and Zn in the K1700 Stream (Fig. 1 and Appendix A, p. A-4) may be due to the metal cleaning and other operations in K1420. However, since these samples generally represent recent deposition, and since drains from K1420

currently go to one or more of the K1407-B holding ponds and since K 1407-C Pond once received sediment from K-1407-B Pond (Fig. 1), some connection must exist, or must have existed in the recent past, between the ponds and the surface stream sediments.

The actual mechanism for this connection is unclear. An electromagnetic conductivity survey of the K1407C pond (R. H. Ketelle, and T. L. Ashwood, unpublished data, March 1985) indicated the presence of a groundwater plume from the pond toward the stream; however, it is by no means certain that groundwater contamination is the only source of elevated sediment levels. The K1407B pond has an overflow discharge directly into the K1700 stream. Contamination has been detected both upstream and downstream from this discharge. Another possible contamination mechanism might be breaching and/or erosion of the pond embankments. For example, there appears to be a small seep in the K1407C embankment adjacent to sample 41R (Appendix A, p. A-4).

Samples 5R, 48, and 49, collected upstream of the K1700 weir (Appendix A, p. A-4), had a visible, oily sheen. Apparently the excessive hydrocarbon levels effectively blinded the PCB scan (L. W. McMahon, personal interview, May 1985). Further analyses should be conducted.

The sources of elevated arsenic and lead levels in the K1700 stream also are unclear. High TOC and miscellaneous organics might well come from the coal pile and/or K1420 activities.

East Fork Poplar Creek appears to be a source of Cd, Pb, Hg,  $^{137}$ Cs,  $^{60}$ Co,  $^{238}$ U and several organics. The Hg from East Fork Poplar Creek is evident in decreasing levels downstream in Poplar

Creek. The role of East Fork Poplar Creek as a contaminant source is discussed further in Sect. 3.2, Sediment Cores.

In addition to K1700 and East Fork there are two other areas along Poplar Creek that have high contaminant levels in the sediments. The stretch of stream that separates K31 and K27 (Fig. 1 and Appendix A, p. A-6) contains sediments having elevated levels of uranium isotopes and silver (sample points 84L, 86R, 88R, and 89R). Since the K27 area contains the purge cascade, which has an atmospheric vent, the elevated uranium levels could represent released material. However, a more likely explanation is that the uranium comes from the K1700 Stream. The silver anomaly is also consistent with K1700 sediments. It should also be noted that several anomalously high silver concentrations have been measured in the sediment core collected in the segment of Poplar Creek downstream of K27 (Appendix E).

Sediment from a pipe outfall downstream of the K27 facility

(Appendix A, p. A-6, sample point 115) contains elevated levels of Cr,

Zn, PCB, and various organics. PCBs do not show up in samples

downstream of this point.

The K710A powerhouse area (Appendix A, p. A-10, samples 29, 204, and 207) appears to be a source of uranium contamination, although the Clinch River sediments below the powerhouse (Appendix A, p. A-9, samples 162L and 161R) do not show uranium contamination. Use of the powerhouse for storage of uranium-contaminated metal scrap from the Cascade Improvement Program may account for elevated uranium levels.

#### 3.2 SEDIMENT CORES

Deposition, in association with particulate matter, is the principal mechanism for removing chemically reactive contaminants from aquatic systems (Olsen, Cutshall, and Larsen 1982), and burial by sedimentation is the principal mechanism for isolating these contaminants from contact with epibenthic and pelagic biota (Cutshall, Larsen, and Nichols 1981). Since the fine-grained sediments accumulating in river-reservoir areas generally reflect the character of the material transported or released into these areas, changes in the contaminant concentration or chemistry associated with this material generally reflect changes in contaminant input. This pollution input history is recorded in the sedimentary column and can be documented using sedimentary core data.

The concentration and vertical distribution of several radionuclides, organic compounds, and metals in the three cores collected as part of this study are illustrated in Fig. 2. The respective vertical distribution data are listed in Appendix E along with additional data for several other contaminants. It is evident from Fig. 2 and Appendix E that contaminant levels in subsurface sediments often greatly exceed concentrations near the surface, reflecting the relatively large quantities of contaminants released during the 1950s and early 1960s. Turner, Olsen, and Wilcox (1985) have shown the Hg and 137 Cs profiles in sediment cores collected from the Clinch River and Watts Bar Reservoir to be strongly correlated with documented discharge histories for Hg from the Y-12 Plant and 137 Cs from ORNL. With an independent means of determining an accurate



Radionuclide, organic and metal profiles in sediment cores F1g. 2.

sediment chronology (perhaps from other natural radionuclides or pollen profiles), it would be possible to estimate contaminant transport times and total contaminant retention within the Poplar Creek, Clinch River, and Watts Bar Reservoir systems, but such estimates would require several more core profiles, as well as data concerning contaminant water-to-particle distributions, an undertaking beyond the objectives of this study.

A comparison of the concentration and vertical distributions of  $^{137}\mathrm{Cs}$  and  $^{60}\mathrm{Co}$  in the East Fork Poplar Creek core with concentrations and distributions in the other two cores (Fig. 1 and Appendix E) indicates that the Y-12 Plant and the city of Oak Ridge have been relatively insignificant sources of these two radionuclides. relative to the input from ORNL via White Oak Creek and the Clinch River. The large subsurface peak of  $^{60}$ Co in the East Fork Poplar Creek core at the 4- to 6-cm-depth interval, however, is an order of magnitude greater than the maximum level of  $^{60}$ Co measured for the 180 surface sediment samples collected throughout the system (Table 8). This subsurface peak does not coincide with the deeper (12 to 16 cm) peak in Hg and <sup>238</sup>U concentration (Fig. 2) and, when compared with the <sup>60</sup>Co distributions in surface sediments along East Fork Poplar Creek, implies that there has been a relatively recent and large release of this radionuclide from the Oak Ridge Sewage Treatment Facility (Merritt 1984). Although ORNL is the source of most of the  $^{60}$ Co in the Poplar Creek, Clinch River, and Watts Bar Reservoir system, it is apparent that this recent release from the Oak Ridge Sewage Treatment Plant has been manifested throughout the lower portion of Poplar Creek, as evidenced by the <sup>60</sup>Co peak at the 6- to 8-cm-depth increment of the Lower Poplar Creek core (Fig. 2).

Although large variations in the sedimentary characteristics of the East Fork Poplar Creek core (Fig. 2) make it difficult to document the history of contaminant discharge accurately, the high concentrations of Hg and <sup>238</sup>U in this core, the coincidence of their subsurface peaks, and their general decrease in concentration downstream imply that releases from the Y-12 Plant may be a significant source of both contaminants. In addition, the relatively high concentrations of Pb, Cd, Cu, Zn, and several organic compounds in this core (Appendix E) imply that discharges from Y-12 may be an important source of these contaminants relative to releases from other facilities on the Oak Ridge Reservation.

The sediments in the top 88 cm of the Lower Poplar Creek core consisted of uncohesive, fine-grained muds, exhibiting little variation in sediment texture or organic carbon (Fig. 2). Below 88 cm, to the core bottom at 128 cm, the sediments consisted of relatively coarse-grained sands, coal, slag, ash, and gravel. Although  $^{137}{\rm Cs}$ ,  $^{60}{\rm Co}$ , and  $^{238}{\rm U}$  concentrations sharply decreased below 88 cm, all three nuclides were nevertheless detectable to the core bottom, and organic carbon and  $^{226}{\rm Ra}$  concentrations actually increased by a factor of 2 to 3 in the coarse-grained material below (Appendix E). We interpret this abrupt change in sedimentary characteristics to reflect the 1964 cessation of discharge associated with the operation of the K710A powerhouse on the Clinch River (Fig. 1). This powerhouse operated from the mid 1940s to 1964 (T. C. Wilson, telephone

conversation, August 1985), pumping water from the Clinch River and discharging this water into Poplar Creek near the site of core collection (Fig. 1). Surface sediment samples (26 and 27, see Appendix A. p. A-10) collected along this discharge route (which is now a backwater area of Poplar Creek) were contaminated with 137Cs (Appendix B) as a result of this pumping-discharge operation. We suggest that the coarse-grained material reflects the erosion of fine-grained material and the deposition of sand, coal, slag, and ash during discharge from the powerhouse. In addition, we suggest that the top 88 cm of fine-grained sediment reflects the accumulation of backwater muds since 1964. The high concentrations of  $^{137}$ Cs and  $^{60}\mathrm{Co}$  and the relatively low concentration of Hg in the sediments between 88 and 60 cm imply that Clinch River muds formed a major component of the fine-grained material which accumulated immediately after powerhouse operation ceased in 1964. Since the major releases of both Hg and <sup>238</sup>U from the Y-12 Plant occurred prior to 1964 (Turner, Olsen, and Wilcox 1985), we suggest that the sharp increase in  $^{238}$ U concentration at 88 cm does not reflect a large release of uranium but reflects the change in sedimentary character. We also suggest that the gradual decrease in <sup>238</sup>U concentrations from 88 cm to the sediment surface reflects a general decrease in the extent of  $^{238}$ U contamination since 1964. In addition, the high concentrations of Ni, Ag, Cr, and Zn in the Lower Poplar Creek core relative to the other cores (Appendix E) are consistent with the surface sediment data, which indicate that the primary source of these metals is discharges from the K-25 facility. Two major uncertainties which may affect the preceding

evaluation are the unknown effects of closing Melton Hill Dam (ca. 1963) and the two-way circulation patterns in Poplar Creek caused by seasonal water level fluctuations. Further study of these phenomena is required before our evaluation can be confirmed.

The Watts Bar Reservoir core was collected from an area where the Clinch River widens into Watts Bar Lake. Because Watts Bar Dam was first closed in 1942 and because reservoirs serve as efficient fine-particle and contaminant traps, this core should contain a complete pollution record, integrating discharges from all three of the DOE facilities on the Oak Ridge Reservation. Although the  $^{238}$ U concentrations in the sediments of this core (Appendix E) are very near our detection limit for a 1000-min count and 80 gram sample (1.4 pCi/g), there appear to be several peaks in the  $^{238}$ U concentration below 20 cm (Fig. 2). This is not consistent with data published previously by Turner, Olsen, and Wilcox (1985) which indicated that there was only one peak in the  $^{238}\mathrm{U}$  concentration and that this peak correlated with the peak levels of Hq and  $^{137}$ Cs. At the present time, it is still not possible to discern the relative contribution of <sup>238</sup>U from the K-25 facility. The strong correlation between the Hg and <sup>238</sup>U profile in the East Fork Poplar Creek core implies that the Y-12 facility maybe a significant source for the uranium contamination in the Poplar Creek, Clinch River and Watts Bar Reservoir system, but an examination of Hq and U peak and inventory ratios in several more cores collected downstream of the East Fork Poplar Creek site would be needed to document this with more certainty. In addition, a comparison of the 238 U peak profile in the

Watts Bar core with an accurate sediment chronology and  $^{238}$ U release records from the K-25 plant would help discern the extent and history of uranium contribution from the K-25 facility.

### 4. SUMMARY AND CONCLUSIONS

Based on approximately 180 sediment grab samples and 3 sediment cores, the following areas appear to have levels of various contaminants which exceed the K-25 mean levels:

- K901A Chromate Pond--Cr, Se, Zn, and some organics;
- Classified Burial Ground--Ag, Pb, and Se;
- Clinch River--Cd, Se, 137Cs, 60Co, and 238U;
- K1007B Pond--Ag, Cd, Cr, PCB, and <sup>238</sup>U;
- K1700 Stream--Ag, As, Cd, Cr, Ni, Pb, Se, Zn, several organics, and uranium isotopes;
- East Fork Poplar Creek--Cd, Hg, Pb, Se, several organics,  $^{137}\text{Cs}$ ,  $^{60}\text{Co}$  and  $^{238}\text{U}$ ;
- Poplar Creek--Ag, Cd, Cr, Hg, Se, Zn, several organics, PCB, and radioisotopes;
- K710A Powerhouse—Uranium isotopes

Several conclusions can be drawn from a review of these data, including:

- 1.  $^{137}$ Cs and  $^{60}$ Co come primarily from ORNL via the White Oak Creek and the Clinch River; however, some  $^{137}$ Cs and  $^{60}$ Co have recently entered Poplar Creek via East Fork;
- Although surface sediments in several areas (primarily K1700, K710A, and K27) are contaminated with uranium, the significance of these areas as sources of uranium contamination in the major streams is uncertain;
- 3. Mercury contamination is coming from East Fork Poplar Creek;
- 4. The most heavily contaminated sediments occur in the K1700 stream and the K901A chromate pond. The actual effects of these potential sources on Poplar Creek and the Clinch River are not clear.
- 5. PCB contamination from K1007B and the pipe outfall at K1203 do not appear to be manifested at levels greater than 1  $\mu$ g/g in sediments downstream from these sites.

#### 5. ACKNOWLEDGMENTS

The authors thank L. M. Stubbs, J. W. Switek, and F. G. Taylor of the Environmental Sciences Division at ORNL, for their assistance in taking the sediment grab samples and cores. L. W. McMahon of the K-25 Process Support Department coordinated the sample analyses.

R. H. Ketelle of ORNL's Energy Division and R. R. Turner of the Environmental Sciences Division provided helpful suggestions throughout the project and reviewed the draft of this report. Finally, the authors express their gratitude to J. E. Stone, formerly of the K-25 Environmental Management Department, for his enthusiastic assistance and support during the course of the study.

#### 6. REFERENCES

- Cutshall, N. H., I. L. Larsen, M. M. Nichols. 1981. Man-Made

  Radionuclides Confirm the Rapid Burial of Kepone in James River

  Sediments. <u>Science</u> 213:440-442.
- Cutshall, N. H., I. L. Larsen. 1980. BGSUB and BGFIX: Fortran

  Programs to Correct Ge(Li) Gamma-Ray Spectra for Photopeaked fro

  Radionuclides in Background. ORNL/TM-7051, Oak Ridge National

  Laboratory, 17 pp.
- Department of Energy. 1979. Environmental Assessment of the Oak Ridge Gaseous Diffusion Plant Site. DOE/EA-0106, 205 pp.
- Hoffman, F. O., B. G. Blaylock, C. C. Travis, K. L. Daniels,
  E. L. Etnier, K. E. Cowser, and C. W. Weber. 1984. Preliminary
  Screening of Contaminants in Sediments. ORNL/TM-9370, Oak Ridge
  National Laboratory, 86 pp.
- Lanesky, D. E., B. W. Logan, R. G. Brown, and A. C. Hine. 1979. A new approach to portable vibracoring underwater and on land. <u>J. of Sed. Petr.</u> 49:654-657.
- Larsen, I. L. and N. H. Cutshall. 1981. Direct Determination of Be in Sediments. <u>Earth Plan. Sci. Letters</u> 54:397-384.
- Merritt, R. 1984. Quadrex source of contamination. <u>The Oak Ridger</u>, March 29, 1984, pp. 1-2. Oak Ridge, Tennessee.
- Olsen, C. R., N. H. Cutshall, and I. L. Larsen. 1982.

  Pollutant-Particle Associations and Dynamics in Coastal Marine
  Environments: A Review. Marine Chemistry 11:501-533.

- Pasternak, B. S. and N. H. Harley. 1971. Detection limits for Radionuclides in the Analysis of Multi-Component Gamma Ray Spectrometer Data. <u>Nuclear Instruments and Methods 91</u>:533-540.
- Turner, R. R., C. R. Olsen and W. J. Wilcox. 1985. Environmental

  Fate of Mercury and Cesium-137 Discharged fro Oak Ridge

  Facilities. In: <u>Proceedings of the 18th Annual Conference of Trace Substances in Environmental Health</u>, Columbia, Missouri, June 1984.

APPENDICES

APPENDIX A
SAMPLE LOCATIONS



East Fork Poplar Creek and Bear Creek



Upper Poplar Creek and East Fork



K1700 Stream

ORNL-DWG 85-14342

Poplar Creek



Poplar Creek



Poplar Creek and K1007B



Poplar Creek



Clinch River



Clinch River and K710A Powerhouse



Clinch River



Clinch River and K1515



K-901A Chromats Pond



**Miscellaneous** 

APPENDIX B
RADIOISOTOPES

APPENDIX B
RADIOISOTOPE DATA

| CHROMATE POND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AREA/SAMPLE NO.                       | Be7     | RADIOI<br>Cs137 | SOTOPES<br>Co60 | (pCi/g)<br>U238 | U235 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|-----------------|-----------------|-----------------|------|
| \$\$020785-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CUDOMATE DOND                         |         |                 |                 |                 |      |
| \$\$020785-124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | . 7 70  | 3 74            | ••              |                 |      |
| \$\$020785-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                     |         |                 |                 |                 |      |
| \$\$020785-126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| \$\$020785-127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| \$\$020785-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| \$\$020785-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| \$\$020785-131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| \$\$020885-132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| \$\$020885-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| \$\$020885-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| \$\$020885-135\$  \$\$3.04\$  \$\$1.41\$  \$\$ND\$  \$\$ND\$  \$\$ND\$  \$\$ND\$  \$\$ND\$  \$\$S020485-42\$  \$\$S020485-43\$  \$\$56\$  \$\$15\$  \$\$ND\$  \$\$S022885-215\$  \$\$ND\$  \$\$S022885-216\$  \$\$ND\$  \$\$S022885-216\$  \$\$ND\$  \$\$S022885-217\$  \$\$ND\$  \$\$ND  \$\$ND |                                       |         |                 |                 |                 |      |
| CLASS. BURIAL GRND  \$\$020485-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |         |                 |                 |                 |      |
| \$\$020485-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55020885-135                          | 3.04    | 1.41            | ND              | ND              | ND   |
| \$\$020485-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CLASS. BURIAL GRND                    |         |                 | /               |                 |      |
| \$\$020485-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>-</del>                          | .17     | .16             | ND              | 1 Q             | NΩ   |
| \$\$022885-215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| \$\$022885-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| \$\$5022885-217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |         |                 |                 |                 |      |
| SS022885-218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |         |                 |                 |                 |      |
| CLINCH RIVER  SS013185-22 ND 14.90 .70 ND ND SS013085-14 ND 13.40 1.07 ND ND SS013185-21 .22 5.71 .64 ND ND SS021185-151L ND 12.82 1.14 ND ND SS021385-24 .81 7.16 .49 ND ND SS021585-166L ND 9.15 .70 2.8 .1 SS021585-165L ND 6.41 .19 ND ND SS021585-164L .33 8.57 .84 ND ND SS021485-160R ND 1.41 .12 ND ND SS021485-159 .26 2.38 .24 ND ND SS021485-159 .26 2.38 .24 ND ND SS021485-158R .80 .31 ND ND ND SS021485-158R .80 .31 ND ND ND SS021485-158R .80 .31 ND ND ND SS02185-208 ND 7.87 .45 5.5 .7 SS013185-30 .63 11.20 .85 5.0 .2 SS02185-209 ND 12.28 .77 ND ND SS021585-161R ND 7.77 .52 ND ND SS020785-129 1.52 14.40 1.34 ND ND SS021185-156L ND 8.75 .61 ND ND SS021185-156L ND 8.75 .61 ND ND SS021185-157L ND 9.05 .86 ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · · |         |                 |                 |                 |      |
| \$\$013185-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | • • • • | • 1 4           | NU              | טאו             | טא   |
| \$\$013085-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |         |                 |                 |                 |      |
| \$\$013085-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS013185-22                           | ND      | 14.90           | .70             | ND              | ND   |
| \$\$013185-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS013085-14                           | ND      | 13.40           |                 |                 |      |
| SS021185-151L         ND         12.82         1.14         ND         ND           SS013185-24         .81         7.16         .49         ND         ND           SS021585-166L         ND         9.15         .70         2.8         .1           SS021585-165L         ND         6.41         .19         ND         ND           SS021585-164L         .33         8.57         .84         ND         ND           SS021485-160R         ND         1.41         .12         ND         ND           SS021485-159         .26         2.38         .24         ND         ND           SS021585-163L         .85         7.04         .55         ND         ND           SS021485-158R         .80         .31         ND         ND         ND           SS022185-208         ND         7.87         .45         5.5         .7           SS013185-30         .63         11.20         .85         5.0         .2           SS022185-209         ND         12.28         .77         ND         ND           SS021585-162L         .69         7.22         .71         ND         ND           SS021585-163R <t< td=""><td></td><td>.22</td><td>5.71</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | .22     | 5.71            |                 |                 |      |
| SS013185-24       .81       7.16       .49       ND       ND         SS021585-166L       ND       9.15       .70       2.8       .1         SS021585-165L       ND       6.41       .19       ND       ND         SS021585-164L       .33       8.57       .84       ND       ND         SS021485-160R       ND       1.41       .12       ND       ND         SS021485-159       .26       2.38       .24       ND       ND         SS021585-163L       .85       7.04       .55       ND       ND         SS021485-158R       .80       .31       ND       ND       ND         SS022185-208       ND       7.87       .45       5.5       .7         SS013185-30       .63       11.20       .85       5.0       .2         SS022185-209       ND       12.28       .77       ND       ND         SS021585-162L       .69       7.22       .71       ND       ND         SS021585-129       1.52       14.40       1.34       ND       ND         SS020785-123       .80       7.21       .66       ND       ND         SS021185-156L       ND <td>SS021185-151L</td> <td></td> <td>12.82</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SS021185-151L                         |         | 12.82           |                 |                 |      |
| SS021585-166L       ND       9.15       .70       2.8       .1         SS021585-165L       ND       6.41       .19       ND       ND         SS021585-164L       .33       8.57       .84       ND       ND         SS021485-160R       ND       1.41       .12       ND       ND         SS021485-159       .26       2.38       .24       ND       ND         SS021585-163L       .85       7.04       .55       ND       ND         SS021485-158R       .80       .31       ND       ND       ND         SS022185-208       ND       7.87       .45       5.5       .7         SS013185-30       .63       11.20       .85       5.0       .2         SS022185-209       ND       12.28       .77       ND       ND         SS021585-162L       .69       7.22       .71       ND       ND         SS021585-161R       ND       7.77       .52       ND       ND         SS020785-123       .80       7.21       .66       ND       ND         SS021185-156L       ND       8.75       .61       ND       ND         SS021185-157L       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SS013185-24                           | .81     |                 |                 |                 |      |
| SS021585-165L         ND         6.41         .19         ND         ND           SS021585-164L         .33         8.57         .84         ND         ND           SS021485-160R         ND         1.41         .12         ND         ND           SS021485-159         .26         2.38         .24         ND         ND           SS021585-163L         .85         7.04         .55         ND         ND           SS021485-158R         .80         .31         ND         ND         ND           SS022185-208         ND         7.87         .45         5.5         .7           SS013185-30         .63         11.20         .85         5.0         .2           SS022185-209         ND         12.28         .77         ND         ND           SS021585-162L         .69         7.22         .71         ND         ND           SS021585-161R         ND         7.77         .52         ND         ND           SS020785-123         .80         7.21         .66         ND         ND           SS021185-156L         ND         8.75         .61         ND         ND           SS021185-157L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SS021585-166L                         |         |                 |                 |                 |      |
| \$\$021585-164L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS021585-165L                         |         |                 |                 |                 |      |
| \$\$021485-160R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS021585-164L                         |         |                 |                 |                 |      |
| \$\$021485-159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SS021485-160R                         |         |                 |                 |                 |      |
| \$\$021585-163L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS021485-159                          |         |                 |                 |                 |      |
| \$\$021485-158R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |         |                 |                 |                 |      |
| \$\$022185-208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| SS013185-30       .63       11.20       .85       5.0       .2         SS022185-209       ND       12.28       .77       ND       ND         SS021585-162L       .69       7.22       .71       ND       ND         SS021585-161R       ND       7.77       .52       ND       ND         SS020785-129       1.52       14.40       1.34       ND       ND         SS020785-123       .80       7.21       .66       ND       ND         SS021185-156L       ND       8.75       .61       ND       ND         SS021185-157L       ND       9.05       .86       ND       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |         |                 |                 |                 |      |
| SS022185-209       ND       12.28       .77       ND       ND         SS021585-162L       .69       7.22       .71       ND       ND         SS021585-161R       ND       7.77       .52       ND       ND         SS020785-129       1.52       14.40       1.34       ND       ND         SS020785-123       .80       7.21       .66       ND       ND         SS021185-156L       ND       8.75       .61       ND       ND         SS021185-157L       ND       9.05       .86       ND       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |         |                 |                 |                 |      |
| SS021585-162L       .69       7.22       .71       ND       ND         SS021585-161R       ND       7.77       .52       ND       ND         SS020785-129       1.52       14.40       1.34       ND       ND         SS020785-123       .80       7.21       .66       ND       ND         SS021185-156L       ND       8.75       .61       ND       ND         SS021185-157L       ND       9.05       .86       ND       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |         |                 |                 |                 |      |
| SS021585-161R       ND       7.77       .52       ND       ND         SS020785-129       1.52       14.40       1.34       ND       ND         SS020785-123       .80       7.21       .66       ND       ND         SS021185-156L       ND       8.75       .61       ND       ND         SS021185-157L       ND       9.05       .86       ND       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |         |                 |                 |                 |      |
| \$\$020785-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| \$\$020785-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |                 |                 |                 |      |
| SS021185-156L ND 8.75 .61 ND ND SS021185-157L ND 9.05 .86 ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |         |                 |                 |                 |      |
| SS021185-157L ND 9.05 .86 ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |         |                 |                 |                 |      |
| 1/000740550 4047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . –                                   |         |                 |                 |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |         |                 |                 |                 |      |

|                                |             | RADIOIS      | SOTOPES    | (pCi/g)      |          |
|--------------------------------|-------------|--------------|------------|--------------|----------|
| AREA/SAMPLE NO.                | Be7         | Cs137        | C060       | U238         | U235     |
| CLINCH RIVER TRIB 1            |             |              |            |              |          |
| SS012485-10                    | ND          | 3.73         | ND         | ND           | ND       |
| SS012485-11R                   | 1.80        | 5.26         | .38        | ND           | ND       |
| SS012485-12R                   | 1.74        | 5.29         | .33        | ND           | ND       |
| SS012485-9L                    | ND          | 5.06         | .39        | ND           | DM<br>DM |
| SS013185-23<br>SS013185-25     | ND<br>ND    | 6.23<br>2.25 | .51<br>.20 | ND<br>ND     | ND       |
| EAST FORK POPLAR CR            |             |              |            |              |          |
| SS022185-210                   | ND          | 4.00         | 1.42       | ND           | ND       |
| SS022185-211                   | ND          | .15          | ND         | ND           | ND       |
| SS022185-212                   | ND          | .08          | ND         | ND           | ND       |
| SS022185-213                   | ND          | .19          | ND         | ND           | ND       |
| SS022285-138                   | 4.85        | 1.53         | ND         | ND           | ND       |
| SS022285-139                   | · ND        | 3.27         | .94        | ND           | ND       |
| SS022285-140                   | 1.23        | 2.57         | .96        | 3.3          | ND       |
| EF021585(0-4)                  | ND          | 4.20         | 1.60       | 7.2          | .4       |
| K1007B                         |             |              |            |              |          |
| SS022285-142                   | ND          | 1.00         | ND         | ND           | ND       |
| K1007B (PC TRIB 4)             |             |              |            |              |          |
| S\$020485-44                   | ND          | .36          | ND         | ND           | ND       |
| SS020485-45                    | ND          | .27          | ND         | ND           | ND       |
| SS020485-46                    | 1.10        | .43          | .12        | ND           | ND       |
| SS020485-47                    | ND          | .31          | ND         | 10.6         | ND       |
| SS020685-114                   | ND          | .26          | ND         | ND           | ND       |
| K1515                          |             | •            |            |              |          |
| SS013085-13                    | ND          | 12.90        | 1.38       | ND           | ND       |
| SS013085-15                    | ND          | .68          | ND         | ND           | ND       |
| SS013085-16                    | ND          | .29          | 1.94       | ND           | ND       |
| SS013085-17                    | ND          | 10.50        | 1.35       | ND           | ND       |
| SS013185-18                    | ND          | 14.30        | 1.85       | ND           | ND       |
| SS013185-19                    | ND          |              | 1.27       | ND           | ND       |
| SS013185-20                    | 1.42        | 11.60        | 1.67       | ND           | ND       |
| K1700 STREAM                   |             |              |            |              |          |
| SS011085-8R                    | .36         | .13          | ND         | ND           | ND       |
| SS011085-7R                    | .90         | .10          | ND         | ND           | ND       |
| SS020485-41R                   | ND          | .37          | ND         | 8.7          | .5       |
| SS020485-39L                   | ND          | .36          | ND         | ND           | ND       |
| SS020485-38R                   | .60         | .47          | ND         | 2.8          | ND       |
| SS020485-37R                   | .38         | .48          | ND         | 5.2          | .6       |
| SS020485-36R                   | 1.42        | .36          | ND         | 14.4         | .9       |
| SS020485-35L<br>SS020485-34L   | 1.17<br>.51 | .63<br>.83   | ND<br>ND   | 30.2<br>15.0 | 2.1      |
| 55020485-34L<br>\$\$020485-33L | 5.29        | 1.00         | ND         | 58.5         | 3.7      |
| SS020485-32M                   | 1.54        | .89          | ND         | 42.6         | 3.5      |

| AD54 (64MD) 5 NO           |             |             | SOTOPES    |          |          |
|----------------------------|-------------|-------------|------------|----------|----------|
| AREA/SAMPLE NO.            | Be7         | Cs137       | Co60       | U238     | U235     |
| K1700 STREAM               |             |             |            |          |          |
| SS020485-31R               | 2.16        | .76         | ND         | 4.4      | 2.8      |
| SS011085-6L                | 2.30        | 1.14        | ND         | 76.8     | 5.4      |
| SS011085-5R                | 6.29        | .99         | ND         | 145.0    | 12.8     |
| SS020485-49                | ND          | .88         | ND         | 57.1     | 7.0      |
| SS020485-48                | 6.20        | .85         | ND         | 80.9     | 6.4      |
| SS011085-4L                | ND          | 1.39        | .20        | 254.0    | 19.5     |
| SS011085-3L                | 1.61        | 1.24        | .08        | 82.4     | 7.1      |
| SS011085-2L                | 1.83        | 1.06        | ND         | 81.7     | 7.5      |
| SS011085-1L                | .51         | 1.16        | .36        | 29.4     | 2.5      |
| MISCELLANEOUS              |             |             |            |          |          |
| SS020885-136               | ND          | .13         | ND         | 3.1      | ND       |
| SS020885-137               | ND          | ND          | ND         | ND       | ND       |
| SS022185-214               | ND          | .91         | ND         | ND       | ND       |
| SS022285-141               | ND          | .25         | ND         | ND       | ND       |
| PC TRIB 3                  |             |             |            |          |          |
| SS020685-105               | .91         | .53         | ND         | ND       | ND       |
| SS020685-106               | 1.69        | . 54        | ND         | ND       | ND       |
| SS020685-107               | ND          | .67         | ND         | ND       | ND       |
| SS020685-108               | . 64        | .27         | ND         | ND       | ND       |
| SS020685-110               | ND          | 1.02        | .18        | ND       | ND       |
| POPLAR CREEK               |             |             |            |          |          |
| SS021585-137               | .60         | .16         | ND         | ND       | ND       |
| SS021585-138R              | ND          | ND          | ND         | ND       | ND       |
| SS020685-50L               | 1.30        | .40         | ND         | ND       | ND       |
| SS020685-51R               | 1.20        | .20         | ND         | ND       | ND       |
| \$\$020685-52R             | ND          | 4.26        | 1.70       | ND       | ND       |
| SS020685-53R               | 1.52        | .43         | ND         | ND       | ND       |
| SS020685-54R               | 1.92        | .27         | ND         | ND       | ND       |
| SS020685-55R               | ND          | 1.03        | .23        | ND       | ND       |
| SS020685-104               | 1.49        | 1.05        | .41        | ND       | ND       |
| SS020685-56R               | 2.38        | 1.09        | .48        | ND       | ND       |
| SS020685-57<br>SS020685-58 | .81<br>1.98 | .99<br>1.23 | .31<br>.40 | ND<br>ND | ND<br>ND |
| SS020685-59                | 1.49        | 1.23        | ND         | ND       | ND<br>ND |
| SS020685-60                | 2.33        | .97         | .17        | ND       | ND       |
| SS020685-61                | 2.40        | 1.50        | .57        | ND       | ND       |
| SS020685-62                | 1.91        | 1.09        | .37        | ND       | ND       |
| SS020685-63                | 2.07        | .95         | .34        | ND       | ND       |
| SS020685-111R              | 1.94        | 1.84        | .56        | ND       | ND       |
| SS020685-109               | ND          | 1.06        | .38        | ND       | ND       |
| SS020685-64                | ND          | 1.67        | .47        | ND       | ND       |
| SS020685-65L               | 1.70        | 1.26        | .58        | ND       | ND       |
| SS020685-66                | ND          | 1.38        | .65        | ND       | ND       |
| SS020685-67                | 2.05        | 1.38        | 1.28       | ND       | ND       |
| SS020685-68                | 1.45        | 1.61        | .43        | ND       | ND       |

| AREA/SAMPLE NO.              | Be7        | RADIOIS<br>Cs137 | OTOPES<br>Co60 | (pCi/g)<br>U238 | U235     |
|------------------------------|------------|------------------|----------------|-----------------|----------|
|                              |            |                  |                |                 |          |
| POPLAR CREEK                 |            |                  |                |                 |          |
| SS020685-69                  | 1.57       | 1.46             | ND             | ND              | DM       |
| \$\$020685-70                | 1.45       | 1.22             | .37            | ND              | ND       |
| SS020685-71                  | .94        | 2.01             | .50            | ND              | ND       |
| SS020685-72R                 | 1.86       | 1.94             | . 58           | ND              | ND       |
| SS020685-73                  | 1.21       | 1.27             | .46            | ND              | ND       |
| SS020685-74                  | 2.11       | 1.39             | .48            | ND              | ND       |
| SS020685-75                  | .99        | 1.15             | .32            | ND              | ND       |
| SS020685-76                  | 1.38       | 1.41             | 1.25           | ND              | ND       |
| SS020685-77                  | 3.01       | 1.28             | .54            | ND              | ND       |
| SS020685-78                  | 2.72       | 1.39             | .50            | ND              | ND       |
| SS020785-79L                 | 1.88       | 1.39             | .96            | ND              | ND       |
| SS020785-80L                 | 1.10       | 1.86             | .80            | ND              | ND       |
| SS020785-81L                 | 1.36       | 1.20             | .62            | ND              | ND       |
| SS020785-82L                 | ON<br>CO   | 1.20             | .64            | ND              | ND       |
| SS020785-83R                 | 2.87       | 1.41             | .63            | ND              | ND       |
| SS020785-84L<br>SS020785-85R | ND         | 1.76             | .44            | 28.3            | ND       |
| SS020785-85R<br>SS020785-86R | ND         | 1.47             | .39            | ND              | ND       |
| SS020785-86K<br>SS020685-103 | 2.67<br>ND | 1.39             | .63            | ND              | ND       |
| SS020665-103<br>SS020785-87L | ND         | .45              | ND<br>40       | ND              | ND       |
| SS020785-87E                 | 1.69       | 1.42<br>1.15     | .48            | ND<br>ND        | ND       |
| SS020685-102<br>SS020685-101 | .58        | .45              | .33<br>ND      | ND<br>ND        | ND       |
| SS020785-88R                 | 3.15       | 1.71             | .56            | 24.2            | ND<br>ND |
| SS020785-Bak<br>SS020785-121 | .68        | .72              | .19            | 24.2<br>ND      | ND<br>ON |
| SS020785-89R                 | 2.74       | 1.49             | .42            | 13.5            | ND<br>ND |
| SS020785-90R                 | 2.05       | 1.62             | .70            | ND              | ND       |
| SS020785-120L                | .35        | 1.12             | .17            | 6.3             | .4       |
| SS020785-119                 | 1.90       | .73              | .64            | 6.5             | ND       |
| SS020785-117                 | .71        | .93              | .51            | ND              | ND       |
| SS020785-118                 | .81        | .96              | .35            | ND              | ND       |
| SS020785-115                 | 1.02       | 1.29             | .09            | ND              | ND       |
| SS020785-116                 | ND         | 1.19             | .18            | ND              | ND       |
| SS020685-100L                | ND         | .72              | ND.            | ND              | ND       |
| SS020685-112                 | ND         | .15              | ND             | ND              | ND       |
| SS020685-113L                | 1.94       | 1.75             | .60            | ND              | ND       |
| SS020885-91L                 | 1.28       | 1.41             | .25            | ND              | ND       |
| SS020885-92L                 | 1.42       | 1.50             | .58            | 5.8             | ND       |
| SS021185-154R                | .71        | 1.46             | 1.01           | ND              | ND       |
| SS020885-93L                 | ND         | .93              | .19            | ND              | ND       |
| PC022085[0-4CM]              | ND         | ND               | ND             | ND              | ND       |
| SS020885-94R                 | ND         | 3.30             | .35            | 6.8             | .7       |
| SS021185-95R                 | 1.16       | 1.66             | .83            | ND              | ND       |
| SS020885-96L                 | ND         | 2.89             | .45            | ND              | ND       |
| SS020885-97R                 | ND         | 1.92             | .61            | ND              | ND       |
| SS020885-98R                 | 2.01       | 2.52             | .99            | ND              | ND       |
| SS020885-99L                 | 1.54       | 2.60             | .68            | ND              | ND       |
| SS020885-150R                | ND         | 2.49             | .62            | ND              | ND       |
| SS021185-152R                | ND         | 2.47             | .41            | ND              | ND       |
|                              |            |                  |                |                 |          |

|                 |      | RADIOIS | SOTOPES | (pCi/q) |      |
|-----------------|------|---------|---------|---------|------|
| AREA/SAMPLE NO. | Be7  | Cs137   | Co60    | ``U238  | U235 |
| POPLAR CREEK    |      |         |         |         |      |
|                 | 1 00 | 2.50    | 00      | 110     |      |
| SS021185-153L   | 1.00 | 2.52    | .82     | ND      | ND   |
| SS021185-155R   | 4.20 | 3.49    | .72     | ND      | ND   |
| POWERHOUSE      |      |         |         |         |      |
| SS013185-26     | .22  | .13     | ND      | ND      | ND   |
| SS013185-27     | .34  | .28     | ND      | ND      | ND   |
| SS013185-28     | .66  | 3.03    | .35     | ND      | ND   |
| SS013185-29     | 1.91 | 3.45    | .17     | 12.8    | 1.2  |
| SS022185-200    | . 50 | 1.07    | ND      | ND      | ND   |
| SS022185-201    | 1.56 | 1.54    | ND      | ND      | ND   |
| SS022185-202    | 1.45 | 1.74    | ND      | ND      | ND   |
| SS022185-203    | 1.08 | 1.31    | ND      | ND      | ND   |
| SS022185-204    | ND   | .71     | ND      | 24.5    | 2.1  |
| SS022185-205    | ND   | 1.30    | ND      | ND      | ND   |
| SS022185-206    | ND   | .74     | ND      | ND      | ND   |
| SS022185-207    | .32  | 1.84    | .13     | 19.5    | . 9  |

ND = Not Detected

# APPENDIX C ICP AND MERCURY DATA

APPENDIX C
RESULTS OF METALS ANALYSES

| AREA/SAMPLE No.                       | Ag   | As  | Cd  | Cr   | MET. | ALS (u<br>Hg | g/g)<br>Ni  | Pb        | Se       | Zn         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------|------|-----|-----|------|------|--------------|-------------|-----------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AREA/ SAMPLE NO.                      | ny   | ns. | cu  | C1   | Cu   | 119          | 14 1        | רט        | 36       | 211        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CHROMATE POND                         |      |     |     |      |      |              |             |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020785-124                          | <.6  | <5  | <.3 | 740  | 9    | .3           | 27          | 17        | 120      | 230        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | <.6  |     | <.3 | 2800 | 28   | <.2          | 10          | 8         | <5       | 990        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020785-126                          | 1.2  |     | <.3 | 1600 | 8    | .6           | 5           | 8         | <5       | 410        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020785-127                          | <.6  |     | <.3 | 250  | ō    | 1.1          | 2           | 5         | <5       | 350        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020785-130                          | 1.5  |     | <.3 | 3300 | 8    | .6           | 6           | 5         | <5       | 900_       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020885-132                          | 1.8  |     | <.3 |      | 5    | <.1          | 20          | 14        | 110      | 140        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020885-133                          | <.6  | <5  | <.3 | 2100 | 17   | . 9          | 26          | 16        | 88       | 560        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020885-135                          | <.6  | 9   | <.3 | 1600 | 26   | .8           | 39          | 24        | 110      | 230        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |      |     |     |      |      |              |             |           |          | ,          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLASS. BURIAL GRND                    |      |     |     |      |      |              |             |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020485-42                           | 23.0 | <5  | <.3 | 66   | 77   | 1.4          | 83          | 77        | 58       | 230        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS022885-216                          | 1.2  | <5  | <.3 | 17   | 40   | .9           | 120         | 10        | 140      | 41         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |      |     |     |      |      |              |             |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLINCH RIVER                          |      |     |     |      |      |              |             |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS013185-21                           | <.6  | <5  | <.3 | 16   | 12   | .7           | 12          | 9         | 39       | 35         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS021585-165L                         | 1.3  | <5  | <.3 | 17   | 17   | .8           | 24          | 12        | 110      | 92         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS021585-161R                         | 3.7  |     | <.3 | 1    | 1    | 5.3          | 2           | 5         | <5       | 6          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WB021485[0-4CM]                       | 1.4  | 7   | 1.8 | 44   | 38   | 4.2          | 64          | 30        | <5       | 160        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |      |     |     |      |      |              |             |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLINCH RIVER TRIB 1                   |      |     |     |      |      |              |             |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS012485-10                           | <.6  | <5  | <.3 | 51   | 4    | .7           | 38          | 22        | 140      | 190        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |      |     |     |      |      |              |             |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EAST FORK POPLAR CR                   |      |     |     |      |      |              |             |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS022185-212                          | <.6  | <5  | .7  | 21   | 11   | 3.5          | 25          | 16        | 29       | 42         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS022285-138                          | <.6  |     | 3.3 | 45   | 76   | 45.0         | 54          | 110       | 37       | 320        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EF021585(0-4)                         | 4.9  |     | <.3 | 49   | 40   | 20.7         | 33          | 26        | 110      | 130        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | ٠    |     |     |      |      |              |             |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| K1007B (PC TRIB 4)                    |      |     |     |      |      |              |             |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$\$020485-45                         | 12.0 | <5  | <.3 | 150  | 56   | <.5          | 89          | 47        | 38       | 210        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020485-46                           | 17.0 | <5  | 1.0 | 63   | 63   | <.5          | 86          | 37        | 21       | 220        | The state of the s |
|                                       |      |     |     |      |      |              |             |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| K1700 STREAM                          |      |     |     |      |      |              |             |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020485-41R                          | <.6  | 23  | <.3 | 39   | 250  | <1.0         | 420         | 46        | <5       | 160        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020485-35L                          | <.6  | <5  | <.3 |      | 210  | 1.5          | 400         | 39        | 110      | 210        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020485-34L                          | <.6  |     | <.3 |      | 220  | 3.0          | 430         | 49        | 48       | 190        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020485-33L                          | <.6  |     | 1.3 |      | 530  | 1.8          | 460         | 48        | <5       | 240        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020485-32M                          | 89.0 |     | 1.1 |      | 250  | 2.9          | 520         | 73        | <5       | 220        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS020485-31R                          | <.6  |     | 1.1 |      | 210  | 1.8          | 560         | 51        | <5       | 240        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$\$011085-6L                         | 1.8  | 22  |     |      | 300  | 6.6          | 830         | 140       | 57       | 410        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS011085-5R                           | 2.5  |     | <.3 |      | 470  |              | 1200        | 100       | 280      | 450        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$\$020485-49                         | 1.4  |     | <.3 |      | 250  |              | 1000        | 97        | 150      | 330        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS011085-4L<br>SS011085-3L            | <.6  |     | 4.6 |      | 440  | 4.6          | 950<br>1300 | 120<br>94 | <5<br><5 | 510<br>350 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>ふみり 1 ひりつーふし</b>                   | <.6  | 00  | 2.4 | 91   | 260  | U. 1         | 1300        | 34        | ~5       | 220        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# METALS (μg/g)

| AREA/SAMPLE No.                             | Ag         | As            | Cd  | Cr       | Cu         | Hg          | Ni          | Pb       | Se       | Zn                 |        |
|---------------------------------------------|------------|---------------|-----|----------|------------|-------------|-------------|----------|----------|--------------------|--------|
| CK1700 STREAM<br>SS011085-2L<br>SS011085-1L | 1.4        | 45<br>15      |     |          | 260<br>140 | 6.1         | 1200<br>420 | 94<br>49 | <5<br><5 | 370<br>220         |        |
| PC TRIB 3<br>SS020685-105                   | <.6        | <b>&lt;</b> 5 | <.3 | 29       | 18         | <.5         | 34          | 29       | 49       | 45                 |        |
| POPLAR CREEK                                |            |               |     |          |            | •           |             | _        |          |                    |        |
| SS021585-138R                               | 8.8        | <5            |     | 20       | 20         | <.1         | 40          | 5        | 120      | 100                |        |
| SS020685-52R                                | 6.2        | <5            |     | 67       | 78         | 25.6        | 44          | 43       | 72       | 200                |        |
| SS020685-56R                                | <.6        | <5            |     | 22       | 24         | 6.1         | 40          | 24       | 62       | 150                |        |
| SS020685-61                                 | 1.4        | <5            |     | 23       | 27         | 5.8         | 43<br>59    | 27<br>30 | 61<br>77 | 16 <u>0</u><br>170 |        |
| SS020685-111R                               | <.6        | <5            |     | 56       | 47<br>46   | 11.0<br>5.5 | 58          | 30<br>28 | 83       | 180                |        |
| SS020685-65L                                | 2.6        | <5<br><5      |     | 51<br>60 | 48         | 8.3         | 62          | 41       | 110      | 200                |        |
| SS020685-72R                                | 2.7<br>1.8 | <5            |     | 54       | 48         | .0          | 59          | 30       | 89       | 180                |        |
| SS020785-79L<br>SS020785-86R                | 44.0       | <5            |     | 32       | 30         | 5.4         | 46          | 29       | 67       | 170                |        |
| SS020785-120L                               | 1.3        | <5            |     | 95       | 35         | 9.5         | 51          | 27       | 60       | 210                |        |
| SS020785-117                                | 2.1        | <5            |     | 87       | 42         | 5.4         | 57          | 40       | 83       | 230                |        |
| SS020785-115                                | <.6        |               | <.3 | 610      | 62         | <.5         | 68          | 48       | 45       | 590                | ***,,. |
| SS020705-113L                               | <.6        |               | <.3 | 59       | 41         | 8.4         | 65          | 32       | 93       | 200                |        |
| SS021185-154R                               | 1.9        |               | <.3 | 33       | 37         | 4.8         | 56          | 10       | 130      | 140                |        |
| PC022085[0-4CM]                             | 1.4        |               | <.3 | 27       | 43         | < 3.1       | 42          | 15       | 130      | 120                |        |
| SS021185-155R                               | 2.6        |               | <.3 | 46       | 41.        | 7.7         | 60          | 20       | 160      | 150                |        |
| POWERHOUSE                                  |            |               |     |          |            |             |             |          |          |                    |        |
| SS013185-29                                 | <.6        | <5            | <.3 | 45       | 38         | 3.0         | 51          | 58       | 76       | 190                |        |
| SS022185-207                                | 2.8        | <5            | <.3 | 31       | 54         | 2.0         | 48          | 42       | 110      | 180                |        |
|                                             |            |               |     |          |            |             |             |          |          |                    |        |

APPENDIX D
ORGANICS

V 

APPENDIX D

# RESULTS OF GC-MS ANALYSES

|                                   |             |             |              |           |          | ORGA       | NICS (      | μg/g)     |           |           |             |            |
|-----------------------------------|-------------|-------------|--------------|-----------|----------|------------|-------------|-----------|-----------|-----------|-------------|------------|
| AREA/SAMPLE No.                   | TOC<br>(%)  | PCB<br>1254 | PCB<br>1260  | 28        | 3B       | 5B         | 13B         | 188       | 268       | 318       | <b>44</b> B | 45B        |
| ·                                 |             |             |              |           |          |            |             |           |           |           |             |            |
| CHROMATE POND<br>SS020785-125     | 1.9         | <1.0        | <1.0         | ND        | ND       | ND         | 2.9         | ND        | ND        | 1.6       | 1.1         | 1.4        |
| SS020785-127                      | 3.6         | <1.0        | <1.0         | ND        | ND       | ND         | 3.5         | ND        | ND        | .7        | . 6         | 1.0        |
| CLASS. BURIAL G                   |             |             |              |           |          |            |             |           |           | _         |             |            |
| SS020485-42<br>SS022885-216       | 1.2         |             | <1.0         | ND<br>. ] | ND<br>ND | ND<br>ND   | .1<br>ND    | ND<br>ND  | ND<br>1.0 | .3<br>ND  | ND<br>ND    | .4<br>ND   |
|                                   | 7.0         | 47.0        | 17.0         | • 1       | ,,,,     |            | ,,,         |           | ,,,       |           | ,,,,        | ,,,,       |
| CLINCH RIVER<br>SS013185-21       | . 5         | <1.0        | <1.0         | ND        | ND       | ND         | 1.9         | ND        | ND        | ND        | ND          | ND         |
| SS021585-165L                     | 2.6         | <1.0        | <1.0         | ND        | ND       | ND         | ND          | ND        | ND        | ND        | ND          | ND         |
| SS021585-161R<br>WB021485[0-4C    | .8<br>2.5   |             | <1.0<br><1.0 | ND<br>ND  | ND<br>ND | ND<br>ND   | ND<br>3.6   | ND<br>ND  | ND<br>ND  | ND<br>.1  | ND<br>.1    | DМ<br>.1   |
| _                                 |             | <b>\1.0</b> | <b>\1.0</b>  | NU        | NU       | NU         | 3.0         | NU        | HU,       | • 1       | • 1         | • 1        |
| CLINCH RIVER TR<br>SS012485-10    | IB 1<br>3.8 | <1 0        | <1.0         | ND        | ND       | ND         | 8.1         | ND        | ND        | .2        | ND          | ND         |
|                                   |             | 11.0        | 11.0         | NU        | 110      | NO         | 0.1         | NU        | 110       |           |             | 110        |
| EAST FORK POPLA                   |             | -1 0        | 43 A         | ND        |          | NO         | ND          |           | ND.       | ND.       | N.D.        | ND.        |
| SS022185-212<br>SS022285-138      | 3.1         |             | <1.0         | ND<br>ND  | ND<br>ND | ND<br>1.3  | ND<br>4.7   | ND<br>1.9 | ND<br>ND  | ND<br>3.1 | ND<br>2.8   | ND<br>4.0  |
| EF021585(0-4)                     | 1.4         |             | <1.0         | ИD        | ND       | ND         | .7          | ND        | .1        | .3        | .1          | .4         |
| K1007B (PC TRIB                   | 4)          |             |              |           |          |            |             |           |           |           |             |            |
| SS020485-45                       | ND          | 12.6        | <1.0         | .7        | ND       | ND         | . 5         | . 5       | .2        | .9        | .3          | 1.2        |
| SS020485-46                       | 1.4         | 3.0         | <1.0         | .2        | ND       | ND         | ND          | ND        | ND        | ND        | ND          | ND         |
| K1700 STREAM                      |             |             |              |           |          |            |             |           |           |           |             |            |
| SS020485-35L                      | 4.6         |             | <1.0         | ND        | 2.4      | ND         | ND          | ND        | .]        | 3.0       | 2.4         | 2.5        |
| SS011085-5R<br>SS020485-49        | 7.3<br>4.1  | OM<br>0 r>  | ND<br><1.0   | ND<br>ND  | .3<br>ND | ND<br>ND   | 13.9<br>8.2 | ND<br>ND  | .1        | .4        | .4<br>1.1   | .2<br>1.2  |
| 33020403 43                       | 7.1         | , 90        | 11.0         | 110       | 110      | 140        | 0.2         | 110       | • •       | • '       |             | 1.2        |
| POPLAR CREEK                      | •           | -2.0        | -12 0        | N.B.      |          |            |             |           | MD        |           | N.O         | ND         |
| \$\$021585-138R<br>\$\$020685-52R | .9<br>3.8   |             | <1.0         | ND<br>ND  | ND<br>.1 | ND<br>ND   | ND<br>.6    | ND<br>ND  | DМ<br>. Т | ND<br>.4  | ND<br>.3    | ND<br>.1   |
| \$\$020685-111R                   | 2.8         |             | <1.0         | ND        | .2       | ND         | .7          | ND        | ND        | .3        | .3          | .1         |
| SS020685-65L                      | 3.2         |             | <1.0         | ND        | .2       | ND         | .4          | ND        | .3        | .3        | .3          | ND         |
| SS020685-72R                      |             | <1.0        |              | ND        | .1       | ND         | .6          | ND        | ND        | .3        | .3          | .1         |
| SS020785-79L                      | 2.9         |             | <1.0         | ND        | .2       | ND         | .8          | ND        | .1        | ND        | .3          | ND         |
| SS020785-120L                     | 3.3         |             | <1.0         | ND        | ND       | . 5        | .8          | .7        | .1        | 1.2       | .5          | 1.5        |
| SS020785-117                      | 2.3         |             | <1.0         | ND        | ND       | ND         | 1.8         | ND        | ND        | 2.6       | 2.7         | 2.4        |
| \$\$020785-115<br>\$\$020685-113L | 2.9         |             | 5.0<br><1.0  | ND<br>ND  | ND<br>.2 | 2.1        | ND<br>.7    | 3.0<br>ND | .2<br>.1  | 9.8       | 6.6         | 12.1<br>.1 |
| SS021185-154R                     | 3.1<br>2.7  |             | <1.0         | ND        | .4       | N D<br>N D | 96.7        | ND        | .1        | .5        | .7          | .8         |
| PC022085[0-4C                     | 2.6         |             | <1.0         | ND        | ND       | ND         | ND          | ND        | ND        | ND        | ND          | ND         |
| SS021185-155R                     | 2.4         |             | <1.0         | ND        | .5       | ND         | 1.2         | ND        | ND        | 1.1       | 1.0         | 1.6        |
| POWERHOUSE                        |             |             |              |           |          |            |             |           |           |           |             |            |
| SS013185-29                       | 2.4         | <1.0        | <1.0         | ND        | .1       | ND         | 2.6         | ND        | .1        | .3        | .4          | .1         |

# RESULTS OF GC-MS ANALYSES

# ORGANICS (µg/g)

|                 | TOC | PCB  | PCB  |    |    |    | •   |     |     |     |     |     |
|-----------------|-----|------|------|----|----|----|-----|-----|-----|-----|-----|-----|
| AREA/SAMPLE No. | (%) | 1254 | 1260 | 28 | 3B | 5B | 13B | 188 | 26B | 31B | 44B | 45B |
| POWERHOUSE      |     |      |      |    |    |    |     |     |     |     |     |     |
| SS022185-207    | 2.8 | <1.0 | <1.0 | ND | ND | ND | 1.2 | ND  | ND  | .4  | .2  | . 5 |

# ND = Not Detected

# ORGANIC COMPOUND CODES ARE AS FOLLOWS: TOC---Total Organic Carbon 2B----Acenaphthylene 3B----Anthracene

5B---Benzo(a)Anthracene 13B---Bis(2-ethylhexyl)phthlate

18B---Chrysene 26B---di-N-Butylphthalate

31B---Fluoranthene

44B---Phenanthrene

45B---Pyrene

# APPENDIX E SEDIMENT CORE DATA

EAST FORK POPLAR CREEK SEDIMENT CORE (021585)

| SAMPLE | Cs-137        | C0-60                                  | U-238                                 | U-235         | Ra-226        |
|--------|---------------|----------------------------------------|---------------------------------------|---------------|---------------|
| (cm)   | (pCi/g)       | (pCi/g)                                | (pCi/g)                               | (pCi/g)       | (pCi/g)       |
| (CIII) | (pcr/g/       | (bc1, 5,                               | (DC1) 9)                              | (501) 6       | /bc1/ā/       |
|        |               | ······································ | · · · · · · · · · · · · · · · · · · · |               |               |
| 0-2    | 4.8 ± 0.1     | 1.9 ± 0.1                              | 8.5 ± 1.0                             | $0.3 \pm 0.1$ | 0.9 ± 0.1     |
| 2-4    | $3.7 \pm 0.1$ | $1.3 \pm 0.1$                          | $6.0 \pm 3.8$                         | $0.4 \pm 0.1$ | $0.7 \pm 0.1$ |
| 4-6    | $2.0 \pm 0.1$ | $17.9 \pm 0.3$                         | $7.0 \pm 3.8$                         | $0.5 \pm 0.1$ | $0.8 \pm 0.1$ |
| 6-8    | $1.4 \pm 0.1$ | $0.4 \pm 0.1$                          | $9.9 \pm 1.6$                         | $0.7 \pm 0.1$ | $0.6 \pm 0.1$ |
| 8-10   | $1.3 \pm 0.1$ | $0.3 \pm 0.1$                          | 25.7 ± 2.0                            | 1.4 ± 0.1     | $0.7 \pm 0.1$ |
| 10-12  | $0.4 \pm 0.1$ | $0.4 \pm 0.1$                          | 56.9 ± 1.8                            | 2.7 ± 0.1     | $0.9 \pm 0.1$ |
| 12-14  | $0.2 \pm 0.1$ | $0.1 \pm 0.1$                          | 74.4 ± 1.9                            | $3.7 \pm 0.3$ | $0.9 \pm 0.1$ |
| 14-16  | $0.2 \pm 0.0$ | $0.1 \pm 0.0$                          | 31.4 ± 1.7                            | 1.6 ± 0.1     | $1.0 \pm 0.1$ |
| 16-18  | $0.1 \pm 0.0$ | $0.1 \pm 0.1$                          | 16.5 ± 1.1                            | 0.9 ± 0.2     | $0.9 \pm 0.1$ |
| 18-20  | $0.1 \pm 0.1$ | ND                                     | 16.3 ± 1.1                            | $0.7 \pm 0.1$ | $1.1 \pm 0.1$ |
| 20-22  | $0.1 \pm 0.0$ | ND                                     | 4.8 ± 1.4                             | $0.5 \pm 0.1$ | $1.2 \pm 0.1$ |
| 22-24  | ND            | ND                                     | 14.5 ± 1.1                            | $0.6 \pm 0.1$ | $1.1 \pm 0.1$ |
| 24-26  | 0.05±0.01     | 0.02±0.01                              | 2.7 ± 0.9                             | $0.2 \pm 0.1$ | $1.0 \pm 0.1$ |
| 26-28  | 0.05±0.01     | ND                                     | 1.9 ± 0.7                             | ND            | $0.8 \pm 0.1$ |
| 28-30  | ND            | ND                                     | 3.2 ± 1.0                             | ND            | $0.9 \pm 0.1$ |
| 30-32  | ND            | ND                                     | ND                                    | ND            | $0.8 \pm 0.1$ |
| 32-34  | 0.03±0.01     | ND                                     | ND                                    | ND            | $1.0 \pm 0.1$ |
| 34-36  | 0.02±0.01     | ND                                     | ND                                    | ND            | 1.2 ± 0.1     |
| 36-38  | ND            | ND                                     | ND                                    | 0.07±0.04     | $1.0 \pm 0.1$ |
| 38-40  | ND            | ND                                     | ND                                    | ND            | 1.2 ± 0.1     |
| 40-44  | ND            | ND                                     | ND                                    | ND            | 1.2 ± 0.1     |
| 44-48  | ND            | ND                                     | ND                                    | ND            | 1.2 ± 0.1     |
| 48-52  | 0.03±0.01     | ND                                     | 1.2 ± 0.6                             | $0.2 \pm 0.1$ | 1.2 ± 0.1     |
| 52-56  | ND            | ND                                     | ND                                    | ND            | $0.7 \pm 0.1$ |
| 56-60  | 0.12±0.01     | 0.05±0.01                              | 2.4 ± 1.7                             | $0.1 \pm 0.1$ | $0.6 \pm 0.1$ |
| 60-64  | ND            | ND                                     | ND                                    | ND            | $0.8 \pm 0.1$ |
| 64-68  | 0.01±0.01     | ND                                     | $0.7 \pm 0.3$                         | ND            | $0.6 \pm 0.1$ |
| 68-72  | ND            | ND                                     | ND -                                  | ND            | $0.5 \pm 0.1$ |
| 72-76  | ND            | ND                                     | ND                                    | ND            | $0.6 \pm 0.1$ |
| 88-92  | ND            | ND                                     | ND                                    | ND            | 0.8 ± 0.2     |

EAST FORK POPLAR CREEK SEDIMENT CORE (021585)

| SOMPLE                                              |                   | -      |            |    | 0 | SENT           | in St | (ñ/ |          |     |             |          |          | ¥   | FALS     | METALS (µg/g) |     |    |          |                |         |
|-----------------------------------------------------|-------------------|--------|------------|----|---|----------------|-------|-----|----------|-----|-------------|----------|----------|-----|----------|---------------|-----|----|----------|----------------|---------|
| DEPTH                                               | <b>10</b> C       | PCB    | <b>BCB</b> | 39 | 8 | 38 138 18B 26E | 188   | 99  | 318      | 448 | <b>45</b> B | Ą        | As       | ප   | చ్       | និ            | 星   | Z  | 윤        | æ              | Zn      |
| (E)                                                 | 3                 | (1254) | 1380       |    |   |                |       |     |          |     |             |          |          |     |          |               |     |    |          |                |         |
|                                                     |                   |        |            |    |   |                |       |     |          |     |             |          |          |     |          |               |     |    |          |                |         |
| I                                                   | 1.4               | 皇      | 2          | 2  | 2 | 0.7            | Z     | 0.1 | 0.3<br>3 |     | <b>0.</b>   | 4.9      | 2        | 웊   | 64       | \$            | ដ   | ×  | X        | 110            | 8       |
| 4                                                   | ري<br>دي          | ł      | ł          | I  | 1 | 1              | 1     | ţ   | ı        | ł   | 1           | 2        | 2        | 1.9 | \$₽      | ĸ             | 16  | 31 | য়       | 2              | 8       |
| 8-15                                                | 3.7               | ļ      | *          | ı  | 1 | 1              | 1     | ı   | 1        | i   | 1           | 4.4      | 6,8      | 3,3 | 絽        | 87            | ង   | 38 | 2        | 웆              | S<br>Si |
| 12-16                                               | 1.7               | 2      | 2          | 2  | 9 | ผู             | 2     | 0.3 | 1.2      | 0.3 | i.          | 6.3      | 2        | 웆   | 78       | 었             | 83  | æ  | \$       | 55             | 170     |
| 16-20                                               | 3,0               | ł      | ١          | ł  | I | 1              | 1     | 1   | ł        | ı   | ı           | 5,6      | 2        | 1.0 | <u>.</u> | 8             | ž   | 83 | 33       | 31             | ଧ       |
| 20-24                                               | 1.5               | 2      | 2          | 2  | 2 | 12.1           | 9     | 0.1 | 3.8      | 1.2 | 4.8         | 7.0      | 2        | 2   | 31       | 8             | 6.8 | \$ | 16       | 8              | 110     |
| 24-58                                               | 1,                | 1      | 1          | ì  | I | ł              | I     | l   | l        | l   | 1           | 12.0     | 2        | Ź   | Ř        | 87            | 5,6 | \$ | <b>±</b> | සි             | 8       |
| <del>8</del> -33                                    | 1.9               | 2      | 오          | 2  | 2 | 물              | 9     | 0.3 | 9        | 물   | 2           | m<br>E   | <b>9</b> | 2   | ×        | አ             | ų.  | æ  | 9        | ጽ              | 8       |
| %-%                                                 | <b>4</b> ,6       |        |            |    |   |                |       |     |          |     |             |          |          |     |          |               |     |    |          |                |         |
| 36-40                                               | R.<br>Φ           |        |            |    |   |                |       |     |          |     |             |          |          |     |          |               |     |    |          |                | •       |
| <del>*</del> <del>*</del> <del>*</del> <del>*</del> | <b>છ</b><br>ત્યું | 2      | 2          | 2  | 2 | 9              | Z     | 2   | 2        | 모   | 2           | بن<br>ان | 9        | 皇   | ĸ        | 5             | 0.5 | శు | Ξ        | ₹              | 33      |
| 44-48                                               |                   | 2      | 2          | 皇  | 웆 | 물              | 2     | 0.3 | 1.9      | 9   | .;<br>4     | ત્યું    | 2        | 2   | X        | ଧ             | 물   | ଷ  | 6        | <del>1</del> 8 | æ       |
| 48-52                                               | 2:                |        |            |    |   |                |       |     |          |     |             |          |          |     |          |               |     |    |          | ,              |         |
| 55-55<br>55-55                                      | S<br>C            |        |            |    |   |                |       |     |          |     |             |          |          |     |          |               |     |    |          |                |         |
| 9 <del>9</del>                                      | જુ                | 9      | 2          | 2  | 2 | £              | 夂     | 2   | 2        | 2   | 2           | 9        | 2        | 2   | ผ        | <u>5</u>      | 2   | 27 | <b>a</b> | 110            | ß       |
| <b>*9</b>                                           | ~<br>~            |        |            |    |   |                |       |     |          |     |             |          |          |     |          |               |     |    |          |                |         |
| \$ <del>9</del>                                     | 1.3               |        |            |    |   |                |       |     |          |     |             |          |          |     |          |               |     |    |          |                |         |
| 68-72                                               | 6.7               |        |            |    |   |                |       |     |          |     |             |          |          |     |          |               |     |    |          |                |         |
| 72-76                                               | 0.6               |        |            |    |   |                |       |     |          |     |             |          |          |     |          |               |     |    |          |                |         |
| <b>76-8</b> 0                                       | 0.<br>0           | 2      | 2          | 웆  | 9 | 6.8            | 2     | 2   | 2        | 2   | 2           | 9        | 2        | 2   | S        | 2             | 2   | 13 | 53       | 8              | ន       |
|                                                     |                   |        |            |    |   |                |       |     |          |     |             |          |          |     |          |               |     |    |          |                |         |

ORGANIC COMPOUND CODES:

TOC——Total Organic Carbon
38 ——Anthracere
48 ——Benzo(a) Anthracere
138 ——Bis(2-ethylhexyl) phthalate
138 ——Chrysene
268 ——Chrysene
268 ——di-n-Butylphthalate
318 ——Fluoranthere
448 ——Phenanthrene

LOWER POPLAR CREEK SEDIMENT CORE (021485)

|         |               |               |                |               | •             |
|---------|---------------|---------------|----------------|---------------|---------------|
| SAMPLE  | Cs-137        | CO-60         | U-238          | U-235         | Ra-226        |
| (Cm)    | (pCi/g)       | (pCi/g)       | (pCi/g)        | (pCi/g)       | (pCi/g)       |
|         |               |               |                |               |               |
| 0-2     | 1.9 ± 0.1     | $0.6 \pm 0.1$ | 4.5 ± 1.6      | 0.5 ± 0.1     | 1.3 ± 0.1     |
| 2-4     | $1.8 \pm 0.1$ | $0.7 \pm 0.1$ | ND             | ND            | $1.3 \pm 0.1$ |
| 4-6     | $1.7 \pm 0.1$ | $0.8 \pm 0.1$ | ND             | ND            | 1.1 ± 0.1     |
| 6-8     | $1.9 \pm 0.1$ | 1.8 ± 0.2     | 3.2 ± 2.8      | ND            | 1.6 ± 0.2     |
| 8-10    | $1.7 \pm 0.1$ | $0.5 \pm 0.1$ | ND             | ND            | 1.4 ± 0.1     |
| 10-12   | $1.2 \pm 0.1$ | $0.6 \pm 0.1$ | $3.1 \pm 0.1$  | $0.3 \pm 0.1$ | 1.2 ± 0.1     |
| 12-14   | 1.2 ± 0.1     | 0.2 ± 0.1     | 1.9 ± 1.9      | $0.4 \pm 0.1$ | 1.1 ± 0.2     |
| 14-16   | $1.1 \pm 0.1$ | $0.1 \pm 0.0$ | ND             | ND            | 1.3 ± 0.2     |
| 16-20   | $1.3 \pm 0.1$ | $0.4 \pm 0.1$ | $5.3 \pm 1.2$  | $0.2 \pm 0.1$ | 1.2 ± 0.1     |
| 20-24   | $1.1 \pm 0.1$ | $0.2 \pm 0.1$ | $5.0 \pm 3.8$  | $0.4 \pm 0.1$ | $1.3 \pm 0.1$ |
| 24-28   | $1.0 \pm 0.1$ | ND            | 7.7 ± 1.8      | $0.5 \pm 0.1$ | 1.2 ± 0.1     |
| 28-32   | 1.2 ± 0.1     | 0.05±0.02     | 7.0 ± 1.4      | $0.4 \pm 0.1$ | $1.3 \pm 0.1$ |
| 32-36   | $1.0 \pm 0.1$ | 0.03±0.01     | 9.9 ± 1.0      | $0.5 \pm 0.1$ | 1.4 ± 0.1     |
| 36-40   | $0.9 \pm 0.1$ | ND            | $8.1 \pm 1.3$  | $0.5 \pm 0.1$ | 1.2 ± 0.1     |
| 40-44   | 1.1 ± 0.1     | 0.04±0.02     | $9.4 \pm 1.1$  | $0.5 \pm 0.1$ | $1.3 \pm 0.1$ |
| 44-48   | $0.9 \pm 0.1$ | ND            | $6.9 \pm 1.8$  | $0.5 \pm 0.2$ | 1.2 ± 0.1     |
| 48-52   | $1.0 \pm 0.1$ | ND            | 9.1 ± 1.1      | $0.5 \pm 0.2$ | 1.4 ± 0.1     |
| 52-56   | $1.3 \pm 0.1$ | ND            | $7.1 \pm 1.2$  | $0.5 \pm 0.2$ | $1.0 \pm 0.1$ |
| 56-60   | $2.7 \pm 0.1$ | 0.05±0.02     | 13.8 ± 2.0     | 1.1 ± 0.1     | 1.2 ± 0.1     |
| 60-64   | $4.9 \pm 0.1$ | 0.11±0.02     | $16.7 \pm 1.6$ | $0.9 \pm 0.1$ | $1.3 \pm 0.1$ |
| 64-68   | $2.9 \pm 0.1$ | 0.07±0.02     | 12.1 ± 1.2     | $1.0 \pm 0.3$ | $1.3 \pm 0.1$ |
| 68-72   | $2.1 \pm 0.1$ | 0.04±0.01     | 10.6 ± 1.3     | $1.1 \pm 0.2$ | $1.3 \pm 0.1$ |
| 72-76   | 4.8 ± 0.1     | 0.12±0.02     | 24.1 ± 1.9     | 1.8 ± 0.2     | 1.5 ± 0.1     |
| 76-80   | $5.0 \pm 0.1$ | 0.08±0.04     | 14.6 ± 3.5     | 2.6 ± 0.5     | $1.5 \pm 0.1$ |
| 80-88   | $6.3 \pm 0.1$ | 0.10±0.02     | 20.2 ± 1.0     | 1.7 ± 0.1     | $1.3 \pm 0.1$ |
| 88-96   | 2.2 ± 0.1     | 0.07±0.01     | $4.0 \pm 0.9$  | $0.4 \pm 0.1$ | 3.0 ± 0.1     |
| 96-104  | $1.3 \pm 0.1$ | 0.07±0.01     | $2.9 \pm 0.9$  | $0.2 \pm 0.1$ | 3.8 ± 0.1     |
| 104-112 | $2.8 \pm 0.1$ | 0.05±0.02     | 3.2 ± 1.2      | $0.3 \pm 0.1$ | 3.6 ± 0.1     |
| 112-120 | 2.7 ± 0.1     | 0.06±0.01     | 3.1 ± 0.8      | $0.2 \pm 0.1$ | 3.5 ± 0.1     |
| 120-128 | $4.3 \pm 0.1$ | 0.09±0.01     | $3.8 \pm 0.8$  | $0.1 \pm 0.1$ | $3.6 \pm 0.1$ |

WATTS BAR RESERVOIR SELIMENT CORE (022085)

| SAMPLE           |                |        | 88     | ORGANICS | (B/Bn) | _   |     |           |      |            | ÆTALS | (fydin) | - F       |     |               |     |              |             |     |             |                                                                                 |
|------------------|----------------|--------|--------|----------|--------|-----|-----|-----------|------|------------|-------|---------|-----------|-----|---------------|-----|--------------|-------------|-----|-------------|---------------------------------------------------------------------------------|
| DEPTH            | 30             | BCB    | 쯢      | 無        | 3      | 8   | 188 | 95<br>195 | 318  | <b>44B</b> | 45B   | Ą       | æ         | Z   | ភ             | చె  | 물'           | Z           | 윲   | <b>%</b>    | Zn                                                                              |
| (CE)             | 3              | (1254) | (1260) |          |        |     |     | -         |      |            |       |         |           |     |               |     |              |             |     |             |                                                                                 |
|                  |                |        |        |          |        |     |     |           |      |            |       |         |           |     |               |     |              |             |     |             |                                                                                 |
| 4                | ري<br>دو.      | 2      | 2      | 9        | 2      | 9   | 9   | 2         | 2    | 2          | 2     | 1.4     | 2         | 2   | 27            | 43  | ~;           | 54          | 33  | 쮼           | <u>8</u>                                                                        |
| <del>9-4</del>   | <u>နာ</u><br>လ | I      | ı      | 1        | 1      | 1   | l   | 1         | 1    | ļ          | ı     | 웆       | Ξ         | 0.8 | 83            | 34  | 1.7          | <b>\$</b> ( | 27  | 2           | 55<br>25                                                                        |
| 8-12             | 5.2            | ı      | ŧ      | 1        | 1      | ŀ   | ı   | 1         | 1    | ŀ          | 1     | 2       | 9,5       | 0.8 | 82            | 83  | ભ<br>તા      | 窝           | 24  | 웆           | 110                                                                             |
| 12-16            | 0<br>3         | 물      | 9      | 2        | ð      | 2   | 9   | 2         | 0.1  | 2          | 5.0   | 0.9     | 2         | 2   | 13            | ಪ   | 3,9          | 34          | 81  | 130         | 9                                                                               |
| 16-20            | ٠.<br>د.       | I      | 1      | ł        | I      | 1   | 1   | 1         | ŀ    | ı          | ŀ     | 2       | 2         | 2   | 82            | સ   | ස<br>දා      | S           | ສ   | ĸ           | 8                                                                               |
| 20-24<br>43-05   | 5.2<br>2.3     | 2      | 2      | 웆        | 9      | 2   | 2   | 0.2       | 2    | 2          | 0.1   | 2       | 2         | 0,5 | ន             | 18  | લ્ય<br>ત્યું | æ           | ଧ   | 2           | 87                                                                              |
| 24-28            | 2.1            | }      | ł      | l        | ŀ      | ŀ   | !   | ;         | ŧ    | ŀ          | 1     | 2       | ยา<br>เก๋ | 0.7 | 8             | જ્ઞ | <br>         | æ           | ន   | 웆           | 3                                                                               |
| 28-32            | بى<br>3        | 2      | 2      | 2        | 2      | 2   | 웆   | 2         | 9    | 2          | 9     | 1.2     | 2         | æ   | 44            | 53  | 9.9          | 43          | 14  | 33          | 110                                                                             |
| 32-34            | 1              | I      | 1      | 1        | 1      | 1   | ŧ   | 1         | į    | ŀ          | ı     | 2       | <br>      | 0,6 | 64            | 33  | ις<br>O      | 45          | æ   | 욷           | 33                                                                              |
| 34-36            |                | I      | i      | ŧ        | 1      | l   | ı   | ;         | 1    | 1          | 1     | Ş       | 5         | 0.7 | ន             | 33  | <b>б.</b> З  | 43          | æ   | 身           | 160                                                                             |
| 36-40            | ري<br>د        | 1      | 1      | 1        | 1      | 1   | 1   | 1         | ł    | ı          | 1     | 2       | 윷         | £   | <del>\$</del> | 47  | 6,5          | 41          | ដូ  | 2           | 55<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 |
| 40-44            | 9,5            | 9      | 2      | 0.2      | 9      | 0.2 | 2   | 0.1       | o. 4 | ò. 1       | 0.5   | 1.5     | 9         | 2   | 21            | ස   | Ю.<br>О      | 58          | ଥ   | <u>13</u> 0 | 130                                                                             |
| 44-48            | 2.7            | 2      | 웆      | 2        | 2      | 9   | 2   | 2         | 웆    | o. 2       | 0.2   | 2       | 2         | 2   | 88            | ×   | 16.7         | 23          | 83  | 14          | 120                                                                             |
| 48-52            | 2.7            | 1      | ł      | ł        |        | ŀ   | i   | į         | 1    | ł          | 1     | 9       | 2         | 9.0 | ą,            | સ   | 3.6          | 200         | જ   | 2           | 3                                                                               |
| 52-56            | 2.7            | 1.     | 1      | 1        | ı      | i   | 1   | 1         | ł    | ı          | 1     | 9       | 6.8       | 2   | 83            | 15  | 1.3          | ଛ           | 8   | 2           | 3                                                                               |
| 26-60            | ซ<br>ณ         | ð      | Ź      | 2        | 2      | 0°5 | 2   | 9         | 0.1  | 0.1        | 9.0   | 7       | 2         | 2   | ଷ             | 13  | 1.0          | 23          | 13  | 140         | 3                                                                               |
| <del>19-09</del> | 2,3            |        |        |          |        |     |     |           |      |            |       |         |           |     |               |     |              |             |     |             |                                                                                 |
| 64-68            | 6<br>64        |        |        |          |        |     |     |           |      |            |       |         |           |     |               |     |              |             |     |             |                                                                                 |
| 57-89            | بن<br>ج        | 9      | 9      | 물        | 2      | g   | €   | 0.5       | 2    | 0.1        | 6.2   | 2       | 2         | 2   | ស្ល           | 23  | 2            | ೫           | ଅ   | 49          | 97                                                                              |
| 72-76            | بن<br>م        |        |        |          |        |     |     |           |      |            |       |         |           |     |               |     |              |             |     |             |                                                                                 |
| 76-80            | 1              | 2      | 2      | ů        | 3,8    | 9   | 5,4 | 2         | 욷    | 5.4        | 12.0  | 2       | 2         | 9.0 | ສ             | ಸ   | 2            | 17          | 138 | 2           | 35                                                                              |
|                  |                |        |        |          |        |     |     |           |      |            |       |         |           |     |               |     |              |             |     |             |                                                                                 |

ORGANIC COMPOUND CODES:
TOC---Total Organic Carbon
38 ---Anthracene
48 ---Benzolal Anthracene
138---Bis(2-ethylhexyl)phthalate
188---Chrysene
268---di-n-Butylphthalate

318---Fluorantheme 448---Phenanthrene 45B---Pyrene

WATTS BAR RESERVOIR SEDIMENT CORE (022085)

| SAMPLE | Cs-137         | C0-60         | U-238         | U-235          | Ra-226        |
|--------|----------------|---------------|---------------|----------------|---------------|
| (cm)   | (pCi/g)        | (pCi/g)       | (pCi/g)       | (pCi/g)        | (pCi/g)       |
| 0-2    | 10.9 ± 0.3     | 0.7 ± 0.1     | 2.0 ± 1.2     | ND             | 1.2 ± 0.3     |
| 2-4    | $8.6 \pm 0.3$  | $0.8 \pm 0.1$ | ND            | ND             | 1.6 ± 0.2     |
| 4-6    | $7.3 \pm 0.2$  | $0.7 \pm 0.1$ | ND            | ND             | $1.2 \pm 0.2$ |
| 6-8    | $7.9 \pm 0.1$  | $0.7 \pm 0.1$ | ND            | ND             | $1.2 \pm 0.2$ |
| 8-10   | $6.7 \pm 0.2$  | $0.7 \pm 0.1$ | $0.4 \pm 0.9$ | $0.1. \pm 0.1$ | $1.3 \pm 0.1$ |
| 10-12  | $6.9 \pm 0.1$  | $0.5 \pm 0.1$ | ND ·          | ND             | $1.2 \pm 0.1$ |
| 12-14  | $6.7 \pm 0.2$  | $0.3 \pm 0.1$ | ND            | ND             | $0.9 \pm 0.1$ |
| 14-16  | $7.8 \pm 0.2$  | $0.3 \pm 0.1$ | ND            | ND             | $1.1 \pm 0.1$ |
| 16-18  | $8.3 \pm 0.2$  | $0.2 \pm 0.1$ | ND            | ND             | $1.2 \pm 0.2$ |
| 18-20  | 7.1 ± 0.1      | $0.2 \pm 0.0$ | ND            | ND             | 1.1 ± 0.1     |
| 20-22  | 10.5 ± 0.2     | $0.2 \pm 0.1$ | 3.2 ± 1.2     | 0.2 ± 0.1      | 1.1 ± 0.2     |
| 22-24  | $10.4 \pm 0.1$ | $0.3 \pm 0.0$ | 4.0 ± 1.3     | $0.1 \pm 0.1$  | $1.1 \pm 0.1$ |
| 24-26  | 12.8 ± 0.2     | $0.4 \pm 0.1$ | 3.4 ± 1.8     | $0.2 \pm 0.1$  | 1.2 ± 0.1     |
| 26-28  | 14.5 ± 0.2     | $0.4 \pm 0.1$ | $1.9 \pm 0.9$ | $0.1 \pm 0.1$  | $1.2 \pm 0.1$ |
| 28-30  | 20.7 ± 0.4     | $0.7 \pm 0.1$ | 6.3 ± 2.3     | ИD             | 1.1 ± 0.2     |
| 30-32  | 21.1 ± 0.3     | $0.5 \pm 0.1$ | 5.3 ± 1.2     | ND             | 1.4 ± 0.2     |
| 32-34  | 23.6 ± 0.3     | $0.4 \pm 0.1$ | 2.3 ± 0.8     | ND             | 1.0 ± 0.2     |
| 34-36  | 25.7 ± 0.4     | $0.5 \pm 0.1$ | $3.2 \pm 0.9$ | $0.2 \pm 0.1$  | 1.4 ± 0.2     |
| 36-38  | 31.4 ± 0.4     | $0.5 \pm 0.1$ | 6.2 ± 1.6     | ND             | 1.7 ± 0.2     |
| 38-40  | $42.8 \pm 0.5$ | $0.4 \pm 0.1$ | 1.6 ± 1.0     | ND             | $1.7 \pm 0.2$ |
| 40-44  | $71.4 \pm 0.6$ | $0.6 \pm 0.1$ | $5.9 \pm 0.8$ | ND             | $0.9 \pm 0.3$ |
| 44-48  | 46.4 ± 0.5     | $0.6 \pm 0.1$ | 2.9 ± 1.1     | ND             | $1.2 \pm 0.3$ |
| 48-52  | $31.3 \pm 0.4$ | $0.1 \pm 0.1$ | 6.2 ± 2.0     | ND             | $1.3 \pm 0.2$ |
| 52-56  | 25.9 ± 0.4     | ND            | 1.2 ± 0.8     | ND             | 1.1 ± 0.2     |
| 56-60  | 14.4 ± 0.3     | ND            | $4.5 \pm 1.0$ | ND             | 1.1 ± 0.2     |
| 60-64  | $19.7 \pm 0.3$ | ND            | 1.9 ± 0.9     | ND             | $1.5 \pm 0.2$ |
| 64-68  | $13.7 \pm 0.3$ | ND            | $1.9 \pm 0.9$ | $0.2 \pm 0.1$  | $1.2 \pm 0.1$ |
| 68-72  | $2.3 \pm 0.1$  | ND            | 3.4 ± 1.0     | $0.2 \pm 0.1$  | $1.3 \pm 0.1$ |
| 72-76  | $0.7 \pm 0.1$  | , ND          | 1.5 ± 0.8     | ND             | $1.3 \pm 0.1$ |
| 76-80  | 0.2 ± 0.1      | ND            | ИD            | ND             | 1.1 ± 0.1     |

- J. W. Huckabee, Manager, Ecological Studies Program, Electric Power Research Institute, 3412 Hillview Avenue, P.O. Box 10412, Palo Alto, CA 94303
- W. F. Harris, National Science Foundation, 1800 G Street, NW, 88. Room 336, Washington, DC 20550
- 89. George Y. Jordy, Director, Office of Program Analysis, Office of Energy Research, ER-30, G-226, U.S. Department of Energy, Washington, DC 20545
- J. S. Mattice, Electric Power Research Institute, 90. 3412 Hillview Avenue, P.O. Box 10412, Palo Alto, CA 94303
- Helen McCammon, Director, Ecological Research Division, Office of Health and Environmental Research, Office of Energy Research, MS-E201, ER-75, Room E-233, Department of Energy, Washington, DC 20545
- J. Frank McCormick, The University of Tennessee, 92. Knoxville, TN 37916
- V. Nabholz, Office of Toxic Substances, Environmental Review Division, U.S. Environmental Protection Agency, 401 M Street, NW, Washington, DC 20545
- 94. Oak Ridge Public Library, Civic Center, Oak Ridge, TN 37830.
- Irwin Remson, Department of Applied Earth Sciences, Stanford 95. University, Stanford, CA 94305
- 96. R. J. Stern, Director, Office of Environmental Compliance, MS PE-25, FORRESTAL, U.S. Department of Energy, 1000 Independence Avenue, SW, Washington, DC 20585
- Michael Walker, City of Oak Ridge, P. O. Box 1,
- Oak Ridge, TN 37830 Leonard H. Weinstein, Program Director of Environmental Biology, Cornell University, Boyce Thompson Institute for Plant Research, Ithaca, NY 14853
- Raymond G. Wilhour, Chief, Air Pollution Effects Branch, 99. Corvallis Environmental Research Laboratory, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis. OR 97330
- Frank J. Wobber, Ecological Research Division, Office of Health and Environmental Research, Office of Energy Research, MS-E201, Department of Energy, Washington, DC 20545
- M. Gordon Wolman, The Johns Hopkins University, Department of Geography and Environmental Engineering, Baltimore, MD 21218
- Office of Assistant Manager for Energy Research and 102. Development, Oak Ridge Operations, P. O. Box E, U.S. Department of Energy, Oak Ridge, TN 37831
- 103-129. Technical Information Center, Oak Ridge, TN 37831